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FAILURE OF F-PURITY AND F-REGULARITY
IN CERTAIN RINGS OF INVARIANTS

ANURAG K. SINGH

1. Introduction

Let ]q be a finite field of characteristic p, K a field containing it, and R
K[X Xn] a polynomial ring in n variables. The general linear group GLn (Fq)
has a natural action on R by degree preserving ring automorphisms. L. E. Dickson
showed that the subring of elements which are fixed by this group action is a poly-
nomial ring [Di], though for an arbitrary subgroup G of GLn(]q), the structure of
the ring of invariants RG may be rather mysterious. If the order of the group [G[ is
relatively prime to the characteristic p of the field, there is an RG-linear retraction
p: R RG, the Reynolds operator. This retraction makes RG a direct summand
of R as an RG-module, and so RG is F-regular. However when the characteristic p
divides G l, this method no longer applies, and the ring of invariants RG need not
even be Cohen-Macaulay. M.-J. Bertin showed that when R is a polynomial ring in
four variables and G is the cyclic group with four elements which acts by permuting
the variables in cyclic order, then the ring of invariants RG is a unique factorization
domain which is not Cohen-Macaulay, providing the first example of such a ring,
[Be]. Related work and bounds on the depth of RG can be found in the work of
R. M. Fossum and P. A. Griffith; see [FG]. More recently D. Glassbrenner studied
the invariant subrings of the action of the alternating group An on a polynomial ring
in n variables over a field of characteristic p, constructing examples of F-pure rings
which are not F-regular [G l], [G2]. Both these families of examples study rings of
invariants of K[X Xn under the action of a subgroup G of the symmetric group
on n elements, i.e., an action which permutes the variables, and Glassbrenner shows
that for such a group the ring of invariants is F-pure, see [G l, Proposition 0.6.7].
We shall construct examples which demonstrate that the ring of invariants for the

natural action of a subgroup G of GLn (Fq) need not be F-pure. We shall obtain such
examples with the group G being the symplectic group over a finite field. These
non F-pure invariant subfings are always complete intersections, and are actually
hypersurfaces in the case of G SPn(]q) < GLa(]q) acting on the polynomial
ring R K[X, X2, X3, X4]. These examples are particularly interesting if one is
attempting to interpret the Frobenius closures and tight closures of ideals as contrac-
tions from certain extension rings, since we have an ideal generated by a system of
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