MODULES OF FINITE LENGTH AND CHOW GROUPS OF SURFACES WITH RATIONAL DOUBLE POINTS

BY V. Srinivas

Let R be a local ring, and let \mathscr{C}_R denote the category of R-modules of finite length and finite projective dimension. The Grothendieck group $K_0(\mathscr{C}_R)$ is defined, as usual, to be the quotient \mathscr{F}/\mathscr{R} where \mathscr{F} is the free abelian group on isomorphism classes of objects of \mathscr{C}_R , and \mathscr{R} is the subgroup of \mathscr{F} generated by elements [M] - [M''] - [M''] corresponding to exact sequences

$$0 \rightarrow M' \rightarrow M \rightarrow M'' \rightarrow 0$$

in \mathscr{C}_R . Note that \mathscr{C}_R , and hence $K_0(\mathscr{C}_R)$, depends only on the analytic isomorphism class (i.e., the completion R) of R, since modules of finite length are complete. Also, if R is regular, $K_0(\mathscr{C}_R)$ is just \mathbf{Z} , since in $K_0(\mathscr{C}_R)$ a module of length l is equivalent to l copies of the residue field.

If dim R = 2, we say that R has a rational double point if the completion \hat{R} is isomorphic to $\hat{\mathcal{O}}_{P,X}$ where $P \in X$ is the local ring of a rational double point P on a surface X over an algebraically closed field k. Thus if k has characteristic 0, \hat{R} is isomorphic to k[[x, y, z]]/(f(x, y, z)) where f is one of the following:

$$\begin{array}{lll} z^{n+1} + xy & (A_n) \\ z^2 + xy^2 + x^{n+1} & (D_{n+2}), \, n \geq 2 \\ z^2 + y^3 + x^4 & (E_6) \\ z^2 + x^3y + y^3 & (E_7) \\ z^2 + x^3 + y^5 & (E_8). \end{array}$$

We can now state our main result.

THEOREM 1. Let R be a 2-dimensional (noetherian) local ring with algebraically closed residue field k of characteristic 0. Suppose that R has a rational double point. Then $K_0(\mathscr{C}_R) = \mathbf{Z}$.

We have the following geometric consequence. For a normal quasi-projective surface X, the Chow group of zero cycles $F_0K_0(X)$ is defined to be the

Received January 8, 1985.