TENSOR PRODUCTS OF TSIRELSON'S SPACE

BY

RAYMUNDO ALENCAR¹, RICHARD M. ARON AND GERD FRICKE

Tsirelson's space T has attracted considerable interest during the past few years, somewhat eclipsing the original space T^* discovered in 1973 by B. S. Tsirelson [12]. However, in [1], the first two authors and Dineen showed that T^* held the greater interest, from the point of view of holomorphic functions. Specifically, the main result of [1] is that for all positive integers n, $P(^nT^*)$ is reflexive. As a consequence, it is shown that the space $(H(T^*), \tau_{\omega})$ of complex-valued holomorphic functions on T^* , endowed with the Nachbin ported topology, is reflexive. Here, we continue our study of multilinear properties of T^* by showing that $P(^nT^*)$ is "Tsirelson-like", in the sense that it is reflexive, with (not unconditional) basis, and contains no l_p space for $1 . In fact, our method of proof enables us to prove that <math>(H(T^*, l_p), \tau_{\omega})$ and $P(^nT^*, l_p)$ are reflexive for all n = 1, 2, ... and all p, 1 .

Our notation and terminology will follow the earlier paper [1]. Given Banach spaces X and Y, $L({}^{n}X, Y)$ is the Banach space of continuous *n*-linear mappings $A: X \times \cdots \times X \to Y$, with norm

$$||A|| = \sup \{ ||A(x_1, \dots, x_n)|| : x_j \in X, ||x_j|| \le 1, 1 \le j \le n \}.$$

 $L({}^{n}X)$ denotes $L({}^{n}X, K)$ where K = R or C. An important observation for us will be the fact that $L({}^{n}X, Y)$ is isometrically isomorphic to the space $L(\hat{\otimes}_{\pi}^{n}X, Y)$ of linear mappings between the *n*-fold completed projective tensor product of X with itself and Y. Similarly the space $L_{s}({}^{n}X, Y)$ of symmetric continuous *n*-linear mappings is isometrically isomorphic to the space $L((\hat{S})^{n}X, Y)$, where $(\hat{S})^{n}X$ is the symmetric *n*-fold completed projective tensor product of X with itself. $L_{s}({}^{n}X, Y)$ is also isomorphic to the Banach space $P({}^{n}X, Y)$ of *n*-homogeneous continuous polynomials from X to Y, where each element $P \in P({}^{n}X, Y)$ is defined as P(x) = A(x, ..., x) for a unique element $A \in L_{s}({}^{n}X, Y)$. For basic properties of tensor products, we refer to [3] (See also [11]). See [4] for any unexplained notation and definitions from infinite dimensional holomorphy.

© 1987 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Received November 26, 1984.

¹Research supported in part by FAPESP and CNPG-(Brazil), when the author was visiting Kent State University, Kent, Ohio.