# TENSOR PRODUCTS OF TSIRELSON'S SPACE 

BY<br>Raymundo Alencar ${ }^{1}$, Richard M. Aron and Gerd Fricke

Tsirelson's space $T$ has attracted considerable interest during the past few years, somewhat eclipsing the original space $T^{*}$ discovered in 1973 by B. S. Tsirelson [12]. However, in [1], the first two authors and Dineen showed that $T^{*}$ held the greater interest, from the point of view of holomorphic functions. Specifically, the main result of [1] is that for all positive integers $n, P\left({ }^{n} T^{*}\right)$ is reflexive. As a consequence, it is shown that the space $\left(H\left(T^{*}\right), \tau_{\omega}\right)$ of complex-valued holomorphic functions on $T^{*}$, endowed with the Nachbin ported topology, is reflexive. Here, we continue our study of multilinear properties of $T^{*}$ by showing that $P\left({ }^{n} T^{*}\right)$ is "Tsirelson-like", in the sense that it is reflexive, with (not unconditional) basis, and contains no $l_{p}$ space for $1<p<\infty$. In fact, our method of proof enables us to prove that $\left(H\left(T^{*}, l_{p}\right), \tau_{\omega}\right)$ and $P\left({ }^{n} T^{*}, l_{p}\right)$ are reflexive for all $n=1,2, \ldots$ and all $p$, $1<p<\infty$.

Our notation and terminology will follow the earlier paper [1]. Given Banach spaces $X$ and $Y, L\left({ }^{n} X, Y\right)$ is the Banach space of continuous $n$-linear mappings $A: X \times \cdots \times X \rightarrow Y$, with norm

$$
\|A\|=\sup \left\{\left\|A\left(x_{1}, \ldots, x_{n}\right)\right\|: x_{j} \in X,\left\|x_{j}\right\| \leq 1,1 \leq j \leq n\right\}
$$

$L\left({ }^{n} X\right)$ denotes $L\left({ }^{n} X, K\right)$ where $K=R$ or $C$. An important observation for us will be the fact that $L\left({ }^{n} X, Y\right)$ is isometrically isomorphic to the space $L\left(\hat{\otimes}_{\pi}^{n} X, Y\right)$ of linear mappings between the $n$-fold completed projective tensor product of $X$ with itself and $Y$. Similarly the space $L_{s}\left({ }^{n} X, Y\right)$ of symmetric continuous $n$-linear mappings is isometrically isomorphic to the space $\left.L(S)^{n} X, Y\right)$, where $\left(S{ }^{n} X\right.$ is the symmetric $n$-fold completed projective tensor product of $X$ with itself. $\quad L_{s}\left({ }^{n} X, Y\right)$ is also isomorphic to the Banach space $P\left({ }^{n} X, Y\right)$ of $n$-homogeneous continuous polynomials from $X$ to $Y$, where each element $P \in P\left({ }^{n} X, Y\right)$ is defined as $P(x)=A(x, \ldots, x)$ for a unique element $A \in L_{s}\left({ }^{n} X, Y\right)$. For basic properties of tensor products, we refer to [3] (See also [11]). See [4] for any unexplained notation and definitions from infinite dimensional holomorphy.

[^0]
[^0]:    Received November 26, 1984.
    ${ }^{1}$ Research supported in part by FAPESP and CNPG-(Brazil), when the author was visiting Kent State University, Kent, Ohio.

