A COBORDISM OBSTRUCTION TO EMBEDDING MANIFOLDS

BY

LUIS ASTEY

1. Introduction

Let M be a smooth, compact, stably almost complex manifold and v a complex normal bundle for M, of large dimension. Let RP^n denote real projective space of dimension n and ξ the nontrivial real line bundle over RP^n . Then the external tensor product $v \otimes \xi$ is a bundle over $M \times RP^n$, and it is the real bundle underlying the complex bundle $v \otimes_C (\xi \otimes C)$; thus $v \otimes \xi$ is oriented in complex cobordism theory $MU^*($). We shall prove:

THEOREM 1.1. If M embeds in euclidean space with codimension 2l and the complex dimension of v is l + k, then the Euler class of $v \otimes \xi$ in $MU^*(M \times RP^{2k})$ vanishes, provided the natural map

$$MU^{ev}(M) \otimes_{\pi_*MU} MU^*(RP^{2k}) \to MU^{ev}(M \times RP^{2k})$$
 (1.2)

is an isomorphism.

It is well known that if M immerses in codimension 2l then the Euler class $e(v \otimes \xi)$ vanishes over $M \times RP^{2k-1}$. For if v_0 is the normal bundle of an immersion then one has $v \cong v_0 \oplus 2k$ as real bundles, and thus

$$v \otimes \xi \cong v_0 \otimes \xi \oplus 1 \otimes 2k\xi;$$

this implies that $v \otimes \xi$ has a nonvanishing section over $M \times RP^{2k-1}$, because $2k\xi$ has a nonvanishing section over RP^{2k-1} . The content of (1.1) is then that, under appropriate hypotheses, if M embeds in codimension 2l then $e(v \otimes \xi)$ must vanish over the larger space $M \times RP^{2k}$. In the case of Euler classes in singular cohomology with Z_2 coefficients this amounts to the fact that the highest Stiefel Whitney class of the normal bundle of an embedding is zero. In Z_2 cohomology one always has the Künneth theorem in its strong form, and all manifolds are oriented; in this light the hypotheses of (1.1) seem reasonable. The map (1.2) is injective by the Künneth theorem for MU theory [6]; the

Received August 28, 1985

^{© 1987} by the Board of Trustees of the University of Illinois Manufactured in the United States of America