GENERATORS AND RELATIONS FOR FINITELY GENERATED GRADED NORMAL RINGS OF DIMENSION TWO

BY

FRANCES VAN DYKE

Chapter 1. Introduction

Assume that R is a finitely generated graded normal ring of dimension 2 over C such that $R = \bigoplus_k R_k$ where $R_k = 0$ if k < 0 and $R_0 = C$. This implies that R is the coordinate ring of a normal affine surface which admits a C*-action with a unique fixed point P, corresponding to the maximal ideal $\bigoplus_{k>0}^{\infty} R_k$ (see [5]). Henry Pinkham has shown that R is isomorphic to $\mathscr{L}(D) = \bigoplus_{n=0}^{\infty} L(nD)$ where D is a divisor on a Riemann surface X of genus g of the form

$$D = \sum_{p \in X} n_p P + \sum_{\substack{i=1\\p_i \in X}}^k \left(\frac{\beta_i}{\alpha_i}\right) P_i \qquad (*)$$

where $n_p \in Z$, all but finitely many $n_p = 0$, $0 < \beta_i / \alpha_i < 1$, and L(nD) denotes the set of meromorphic functions f, such that $\operatorname{div}(f) + nD \ge 0$. It is easily seen that for each n, L(nD) is a vector space over C.

It is always possible to choose a minimal set $S = \{y_1, \ldots, y_k\}$ of generators for $\mathscr{L}(D)$ such that the elements of S are homogeneous i.e. $y_j \in L(q_jD)$ for some q_j . In the polynomial ring $C[Y_1, \ldots, Y_k]$ give the variable Y_i degree q_i ; then there exists a graded surjective homomorphism

$$\varphi: C[Y_1,\ldots,Y_k] \to \mathscr{L}(D), \quad \varphi(Y_i) = y_i.$$

Let I be the kernel of φ . We call I the ideal of relations for $\mathscr{L}(D)$ corresponding to S.

In the following paper it is shown that in many cases a minimal set of homogeneous generators S and generators for the corresponding ideal of relations I for $\mathscr{L}(D)$ can be determined if homogeneous generators and relations are known for $\mathscr{L}(D_1)$ where $D_1 < D$ and $\mathscr{L}(D_1)$ has a much simpler

Received July 25, 1986.

^{© 1988} by the Board of Trustees of the University of Illinois Manufactured in the United States of America