SWAN MODULES AND ELLIPTIC FUNCTIONS

BY

ANUPAM SRIVASTAV¹

Dedicated to the memory of Irving Reiner

1. Introduction

The normal basis theorem for a finite Galois extension N/L states that N as an L-vector space has a basis of the form $\{a^{\gamma}\}$, where a is a fixed element of N and γ runs over the Galois group $\operatorname{Gal}(N/L) = \Gamma$. In other words, N is a free rank one $L\Gamma$ -module. The analogous question for the rings of algebraic integers, \mathcal{O}_N in N and \mathcal{O}_L in L, is the well-known normal integral basis problem. In fact, \mathcal{O}_N is an \mathscr{A} -module where

$$\mathscr{A} = \{ x \in L\Gamma : \mathscr{O}_N x \subseteq \mathscr{O}_N \},\$$

the associated order of the extension N/L in $L\Gamma$. Thus the best possible result would be that \mathcal{O}_N is \mathscr{A} -free.

Abelian extensions of \mathbf{Q} are contained in cyclotomic extensions. Leopoldt [4] has shown that in the case that $L = \mathbf{Q}$ and Γ is abelian, \mathcal{O}_N is, indeed, \mathscr{A} -free. Furthermore, he has described the order \mathscr{A} explicitly. In the relative case, where both L and N are cyclotomic fields we have the following result [1, Chapter I].

PROPOSITION (1.1). Let m, r be positive integers such that m divides r. Let $N = \mathbf{Q}(\zeta)$, $L = \mathbf{Q}(\zeta^m)$ where ζ is a primitive mr-th root of unity in C. Let $\Gamma = \text{Gal}(N/L)$ and \mathscr{A} be the associated order of N/L in $L\Gamma$. Then, \mathcal{O}_N is a free rank one \mathscr{A} -module.

Abelian extensions of a quadratic imaginary number field are obtained by adjoining singular values of certain elliptic functions. In [10], M.J. Taylor has obtained elliptic analogues of (1.1) for certain Kummer extensions with respect to an elliptic group law. Taylor showed that the ring of algebraic

© 1988 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Received August 11, 1987.

¹Based on a part of the author's Ph.D. thesis. Partially supported by a grant from the National Science Foundation.