SURGERY ON THE EQUATORIAL IMMERSION I

RY

J. SCOTT CARTER

1. Introduction

Herein, smooth immersions of closed unoriented manifolds in codimension 1 Euclidean space are studied. The geometric topology of representative immersions as it relates to stable homotopy invariants is emphasized. The author's studies [1], [2], [3], [4], [5], and [6] are continued. Please see [2] and [6] for synopses.

(1.1) For each k = 1, 2, ..., m there is an immersion

$$e: \bigcup_{j=1}^k S_j^{m-2} \to S^{m-1}$$

defined by the equation

$$e(x_1,\ldots,\hat{x}_j,\ldots,x_m)=(x_1,\ldots,x_{j-1},0,x_{j+1},\ldots,x_m).$$

Here the domain is the disjoint union of k (m-2)-spheres,

$$S_i^{m-2} = \{(x_1, \dots, \hat{x}_i, \dots, x_m) : \sum x_k^2 = 1\};$$

 $e|_{S^{m-2}}$ is an embedding, but the union is immersed. Such an immersion is called an equatorial immersion since each S_j is embedded as an equator of S^{m-1} . The multiple points of $(e, \bigcup_{j=1}^k S_j^{m-2})$ are spheres of lower dimensions. This immersion is null bordant since it is obtained by a piggy back sequence [6] of $(0,0),(0,1),\ldots,(0,k-1)$ surgeries on the empty immersion. Please recall a (j,r)-surgery attaches a hollow j-handle, $D^j \times S^{n-j}$, to an immersion $i: M \to \mathbb{R}^{n+1}$; the core disk, $D^j \times \{0\}$, lies in the r-tuple set $(0 \in D^{n+1-j})$.

The equatorial immersion is a prototype for piggy back sequences of surgeries in the following sense. If a piggy back sequence of $(j,0),\ldots$,

Received December 2, 1986.