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In their work on highest weight categories arising in the representation
theory of Lie algebras and algebraic groups, E. Cline, B. Parshall and L. Scott
recently introduced the notion of a quasi-hereditary algebra (see [1] and [2]).
They define a quasi-hereditary algebra recursively in terms of the existence of
a particular idempotent ideal; finite-dimensional hereditary algebras are typi-
cal examples of quasi-hereditary algebras. On the other hand, they showed
that every quasi-hereditary algebra has finite global dimension.
The purpose of this note is to establish the following three results. First,

finite-dimensional hereditary algebras are characterized as those quasi-heredi-
tary algebras which satisfy a certain refinement property on chains of their
idempotent ideals (Theorem 1). Second, all finite-dimensional algebras of
global dimension 2 are shown to be quasi-hereditary (Theorem 2). Third, the
question of whether every finite-dimensional algebra of finite global dimension
is quasi-hereditary is answered in the negative by providing an example of an
(ll-dimensional serial) algebra of global dimension 4 which is not quasi-
hereditary. The same example illustrates that the class of quasi-hereditary
algebras is not closed under tilting (in the sense of [4]).

In what follows, all tings are semiprimary rings. An associative ring A with
1 is called semiprimary if its Jacobson radical N is nilpotent and A/N is
semisimple artinian. Recall that an ideal I of A is idempotent if and only if
I AeA for an idempotent e of A; in particular, I is a minimal (non-zero)
idempotent ideal provided that e is primitive. An ideal J of A is said to be a
heredity ideal of A if j2 j, JNJ 0 and J, considered as a right A-module
JA, is projective. In fact, this also implies that the left A-module AJ is
projective (see [2] or [3]). A semiprimary ring A is called quasi-hereditary if
there is a chain

of ideals of A such that, for any 1 _< < m, Jt/Jt_l is a heredity ideal of
A1Jt_ . Such a chain of idempotent ideals is called a heredity chain. Let us
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