ITERATED INTEGRALS AND EPSTEIN ZETA FUNCTIONS WITH HARMONIC RATIONAL FUNCTION COEFFICIENTS

BY
Bruno Harris
In memory of Kuo-Tsai Chen

1. Introduction

Theta functions (of one complex variable z in the upper half plane) with harmonic polynomial coefficients are well known ([4], [5], see (2.1) below). They satisfy a transformation formula (2.2) under $z \rightarrow-z^{-1}$ and their Mellin transforms are Epstein zeta functions of s (see (2.3), (2.4)) which satisfy a corresponding functional equation (2.5) under $s \rightarrow k-s$ (k a constant). Using Chen's iterated integrals we find in this paper theta functions with certain harmonic rational function coefficients which (when a polynomial coefficient theta function is added) satisfy the same transformation formula (but they are not modular forms). Corresponding Epstein zeta functions satisfy the classical functional equation (2.9 below). We study a particular example related to the Fermat quartic $F_{4}: X^{4}+Y^{4}=1$ and its Jacobian $J\left(F_{4}\right)$ [1]. Here the value at $s=1$ of the Epstein zeta function with rational function coefficients divided by the product of the L-functions of two elliptic curves (namely $Y^{2}=X^{3} \pm 4 X$) generates the Abel Jacobi image, in $\mathbf{C} / \mathbf{Z}(i)$, of the 1 -cycle in $J\left(F_{4}\right)$ given by $\left[F_{4}\right]-\left[\iota\left(F_{4}\right)\right]$. (We consider only the AbelJacobi image in

$$
\left.H^{3,0}\left(J\left(F_{4}\right)\right)^{*} / H_{3}\left(J\left(F_{4}\right) ; \mathbf{Z}\right)\right)
$$

Section 2

We recall now the formulas defining the theta and Epstein zeta functions associated to a real symmetric positive definite $h \times h$ matrix Q, two vectors $A, B \in \mathbf{R}^{h}$, and a (non-zero) homogeneous polynomial $P(X)$ of degree g in h

[^0]
[^0]: Received February 15, 1989.

