A SIMULTANEOUS ALMOST EVERYWHERE CENTRAL LIMIT THEOREM FOR DIFFUSIONS AND ITS APPLICATION TO PATH ENERGY AND EIGENVALUES OF THE LAPLACIAN

BY

GUNNAR A. BROSAMLER

1. Introduction and summary

Let M be a compact C^{∞} manifold of dimension d. A C^{∞} metric $_{\mathbb{F}}$ on M gives rise to the notions of α -potential and α -energy, $\alpha > 0$. These were discussed in [2] and [4] in the context of the asymptotic behaviour of the diffusion on M with generator $L = \frac{1}{2}\Delta + V$, where Δ is the Laplace operator associated with $_{\mathbb{F}}$, and V is a vector field. In this paper we shall continue that discussion, assuming for simplicity V = 0 and $d \ge 2$. In particular, we shall prove an almost everywhere central limit theorem (a.e. CLT) for the occupation measures of the diffusion, a theorem similar to the one we proved in [5] for IID random variables. The occupation measures assume their values in a nuclear space. We shall exploit "exponential mixing" of the diffusion. As an application of our a.e. CLT, we shall recover the spectrum of the operator Δ from the development of the α -energy on a typical diffusion path. A classical CLT for the occupation measures can be found in [2].

For background material on α -potentials and α -energy in \mathbf{R}^d we refer the reader to [8].

In the case of a compact Riemannian manifold, the α -potential kernels $\{g_{\alpha}, \alpha > 0\}$ were defined in [3] in terms of the fundamental solution of the heat equation. To be precise, if p is the solution of

$$\frac{\partial p}{\partial t}(t,x,y) = \frac{1}{2}\Delta_{y}p(t,x,y), \quad p(0^{+},x,y) = \gamma\delta_{x}(y),$$

with γ the total Riemann measure of $(M,_{\mathscr{F}})$, for $\alpha > 0$ we let

(1.1)
$$g_{\alpha}(x,y) = \frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} t^{\alpha-1} \{ p(t,x,y) - 1 \} dt, \quad x,y \in M.$$

Received March 22, 1988