GENERALIZATION OF MYERS' THEOREM ON A CONTACT MANIFOLD

BY
D.E. Blair and R. Sharma

1. Introduction

In 1941, Myers [4] proved that a complete Riemannian manifold for which Ric $\geq \delta>0$, is compact. In 1981, Hasegawa and Seino [3] generalized Myers' theorem for a Sasakian manifold by proving that a complete Sasakian (normal contact metric) manifold for which Ric $\geq-\delta>-2$, is compact. Actually their proof uses only that the structure is K-contact and not the full strength of the Sasakian condition. A K-contact structure is a contact metric structure such that the characteristic vector field of the contact structure is Killing.

Now a contact metric structure is K-contact if and only if all sectional curvatures of plane sections containing the characteristic vector field are equal to 1 (see e.g. [1], p. 65) and hence there is a lot of positive curvature involved in the problem from the outset. The question then arises for a general contact metric structure: Can we relax the condition that the sectional curvature $K(\xi, X)$ of any plane section containing the characteristic vector field ξ be equal to 1 ; even if we must increase $-\delta$ from near -2 to near 0 to compensate? In general, the notion of a contact metric structure is quite weak; in fact, the set of all such structures associated to a given contact structure is infinite dimensional. So we seemingly must assume some condition generalizing the K-contact structure, then we can study $K(X, \xi) \geq \varepsilon>$ $\delta^{\prime} \geq 0$ and Ric $\geq-\delta>-2$ where δ^{\prime} is a function of δ.

Let M denote a $(2 n+1)$-dimensional contact metric manifold with structure tensors (φ, ξ, η, g); i.e., η is a globally defined contact form

$$
\left(\eta \wedge(d \eta)^{n} \neq 0\right)
$$

ξ its characteristic vector field $(d \eta(\xi, X)=0, \eta(\xi)=1), g$ a Riemannian metric, and φ a skew-symmetric field of endomorphisms satisfying

$$
\varphi^{2}=-I+\eta \otimes \xi, \quad \eta(X)=g(X, \xi), \quad(d \eta)(X, Y)=g(X, \varphi Y)
$$

[^0]
[^0]: Received August 2, 1988.

