GENERALIZATION OF MYERS' THEOREM ON A CONTACT MANIFOLD

BY

D.E. BLAIR AND R. SHARMA

1. Introduction

In 1941, Myers [4] proved that a complete Riemannian manifold for which Ric $\geq \delta > 0$, is compact. In 1981, Hasegawa and Seino [3] generalized Myers' theorem for a Sasakian manifold by proving that a complete Sasakian (normal contact metric) manifold for which Ric $\geq -\delta > -2$, is compact. Actually their proof uses only that the structure is *K*-contact and not the full strength of the Sasakian condition. A *K*-contact structure is a contact metric structure such that the characteristic vector field of the contact structure is Killing.

Now a contact metric structure is K-contact if and only if all sectional curvatures of plane sections containing the characteristic vector field are equal to 1 (see e.g. [1], p. 65) and hence there is a lot of positive curvature involved in the problem from the outset. The question then arises for a general contact metric structure: Can we relax the condition that the sectional curvature $K(\xi, X)$ of any plane section containing the characteristic vector field ξ be equal to 1; even if we must increase $-\delta$ from near -2 to near 0 to compensate? In general, the notion of a contact metric structure is quite weak; in fact, the set of all such structures associated to a given contact structure is infinite dimensional. So we seemingly must assume some condition generalizing the K-contact structure, then we can study $K(X, \xi) \ge \varepsilon > \delta' \ge 0$ and Ric $\ge -\delta > -2$ where δ' is a function of δ .

Let *M* denote a (2n + 1)-dimensional contact metric manifold with structure tensors (φ, ξ, η, g) ; i.e., η is a globally defined contact form

$$(\eta \wedge (d\eta)^n \neq 0),$$

 ξ its characteristic vector field $(d\eta(\xi, X) = 0, \eta(\xi) = 1)$, g a Riemannian metric, and φ a skew-symmetric field of endomorphisms satisfying

$$\varphi^2 = -I + \eta \otimes \xi, \qquad \eta(X) = g(X,\xi), \qquad (d\eta)(X,Y) = g(X,\varphi Y).$$

Received August 2, 1988.

© 1990 by the Board of Trustees of the University of Illinois Manufactured in the United States of America