FUNCTIONS WITH A UNIQUE MEAN VALUE

BY
Joseph Rosenblatt ${ }^{1}$ and Zhuocheng Yang

Section 1

Let G be a Hausdorff locally compact group. An admissible subspace $S \subset L_{\infty}(G)$ is a subspace containing the constants such that if $f \in S$, then ${ }_{g} f(x)=f\left(g^{-1} x\right)$ defines ${ }_{g} f \in S$. A function $f \in L_{\infty}(G)$ potentially has a unique left invariant mean if there is a constant c such that whenever $f \in S \subset L_{\infty}(G), S$ an admissible subspace, then any left invariant mean M on S has $M(f)=c$. A function $f \in L_{\infty}(G)$ has a unique left invariant mean value if it potentially has a unique left invariant mean value, and also there is an admissible subspace $S \subset L_{\infty}(G)$ with $f \in S$ and there is a left invariant mean on S. If G is amenable, the above two notions are the same, but in general a function may potentially have a unique mean value without actually having one. The analogous notions for right translations or translations on left and right are easy to formulate.

A function $f \in L_{\infty}(G)$ left averages (to c) if there is a constant c in the $\|\cdot\|_{\infty}$ - closed convex hull of $\left\{_{g} f: g \in G\right\}$. Any function which left averages to a constant must potentially have a unique left invariant mean value. The following is well known.
1.1. Theorem. If G is amenable as a discrete group, then the following are equivalent for $f \in L_{\infty}(G)$:
(1) f has a unique left invariant mean value;
(2) f left averages;
(3) $f \in\|\cdot\|_{\infty}$-closed span $C \cup\left\{{ }_{g} f-f: g \in G\right\}$;
(4) $f \in\|\cdot\|_{\infty}$-closed span $C \cup\left\{_{g} \zeta-\zeta: \zeta \in L_{\infty}(G), g \in G\right\}$.

Remark. The implications (2) implies (3) and (3) implies (4) are always true. The implications (3) implies (1), (2) implies (1) and (1) implies (4) only need the assumption that G is amenable as a locally compact group. However, all the other implications need the hypothesis that G is amenable as a discrete group. For example, if G is a compact group with a unique

[^0]
[^0]: Received July 20, 1988.
 ${ }^{1}$ Partially supported by a grant from the National Science Foundation

