FUNCTIONS WITH A UNIQUE MEAN VALUE

BY

JOSEPH ROSENBLATT¹ AND ZHUOCHENG YANG

Section 1

Let G be a Hausdorff locally compact group. An *admissible* subspace $S \subset L_{\infty}(G)$ is a subspace containing the constants such that if $f \in S$, then $_{g}f(x) = f(g^{-1}x)$ defines $_{g}f \in S$. A function $f \in L_{\infty}(G)$ potentially has a *unique left invariant mean* if there is a constant c such that whenever $f \in S \subset L_{\infty}(G)$, S an admissible subspace, then any left invariant mean M on S has M(f) = c. A function $f \in L_{\infty}(G)$ has a unique left invariant mean value if it potentially has a unique left invariant mean value, and also there is an admissible subspace $S \subset L_{\infty}(G)$ with $f \in S$ and there is a left invariant mean on S. If G is amenable, the above two notions are the same, but in general a function may potentially have a unique mean value without actually having one. The analogous notions for right translations or translations on left and right are easy to formulate.

A function $f \in L_{\infty}(G)$ left averages (to c) if there is a constant c in the $\|\cdot\|_{\infty}$ - closed convex hull of $\{ f: g \in G \}$. Any function which left averages to a constant must potentially have a unique left invariant mean value. The following is well known.

1.1. THEOREM. If G is amenable as a discrete group, then the following are equivalent for $f \in L_{\infty}(G)$:

- (1) f has a unique left invariant mean value;
- (2) *f left averages*;
- (3) $f \in \|\cdot\|_{\infty}$ -closed span $C \cup \{gf f: g \in G\};$ (4) $f \in \|\cdot\|_{\infty}$ -closed span $C \cup \{g\zeta \zeta: \zeta \in L_{\infty}(G), g \in G\}.$

Remark. The implications (2) implies (3) and (3) implies (4) are always true. The implications (3) implies (1), (2) implies (1) and (1) implies (4) only need the assumption that G is amenable as a locally compact group. However, all the other implications need the hypothesis that G is amenable as a discrete group. For example, if G is a compact group with a unique

Received July 20, 1988.

¹Partially supported by a grant from the National Science Foundation

^{© 1990} by the Board of Trustees of the University of Illinois Manufactured in the United States of America