RIEMANNIAN FOLIATIONS ON SIMPLY CONNECTED MANIFOLDS AND ACTIONS OF TORI ON ORBIFOLDS

BY
A. Haefliger and E. Salem

1. Introduction

Basic properties of Riemannian foliations on simply connected manifolds have been established by P. Molino [Mol-1] and E. Ghys [Ghy]. In this paper we complete their results by showing a close relationship between such foliations and actions of tori on orbifolds.

As a general reference on Riemannian foliations, we refer to the book of P. Molino [Mol].
1.1. We first give a typical example where tori actions on orbifolds arise naturally.

Let H be a connected subgroup of the Lie group of isometries of an orientable Riemannian manifold Y. Let us assume that H acts locally freely on Y. Then the orbits under H of the points of Y are the leaves of a Riemannian foliation \mathscr{F} on Y.

Assume that the closure \bar{H} of H is compact. Let K be a maximal compact subgroup of H. As the Lie algebra of H is a compact Lie algebra ([Bki], Chap. IX), this maximal compact subgroup is unique, hence invariant in H. The quotient group $L=H / K$ is a dense abelian contractible subgroup of the compact group $\bar{L}=\bar{H} / K$ which must be isomorphic to a torus T^{N} of dimension N. The action of K on Y is also locally free; hence the orbits under K are the fibers of a generalized Seifert fibration on Y (i.e. a foliation whose leaves are compact with finite holonomy); its base space is naturally an oriented orbifold X whose underlying topological space is Y / K. The torus $T^{N}=\bar{H} / K$ acts effectively on X and the restriction of this action to the dense subgroup L is locally free. The orbits under L are the leaves of a foliation \mathscr{F}_{X} on X, and the foliation \mathscr{F} is the pull back of \mathscr{F}_{X} by the projection p of Y on X.

Conversely, given an action of a torus T^{N} on an orientable orbifold X of dimension n (see 3.1 and 3.2) and a dense contractible subgroup L of T^{N}

Received July 14, 1988

