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Introduction

Let M be a complete connected riemannian manifold of class Cr, r > 3,
and dimension d > 2. One of the results still viewed by many to be one of
the most important as well as the loveliest concerning the global properties of
such a space is the following work of S. Myers (1941).

THEOREM. Suppose that the Ricci curvature ofM is bounded from below by
a positive constant m. Then the diameter ofM is no larger than

rr(d- 1)lm.

In particular, M is compact.

Here, the Ricci curvature is viewed as a function on the unit tangent
bundle of M. Attempts at generalizing and refining this theorem have
received considerable attention. Most notably, there are the works of W.
Ambrose [1], E. Calabi [4, 5], A. Avez [2], S.T. Yau [18, 19], K. Shiohama [17],
G.J. Galloway [9], S. Markvorsen [13], and J. Cheeger, M. Gromov, and M.
Taylor [7]. In the present paper, our purpose is to prove

MAIN RESULTS (Theorems 3.3 and 3.5). Let m be any given constant, not
necessarily positive. Assume that the Ricci curvature ofM is bounded below by
(resp. strictly greater than) m. Suppose that there exists a point p M and a
number r + such that the distance sphere in M with centerp and radius r has
mean curvature away from its singularities greater than (resp. greater than or
equal to ]x/T- Then the diameter ofM has a finite upper bound, and hence M is
compact. In the first case, the upper bound on the diameter can be explicitly
estimated in terms of the supremum of the mean curvature.
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