AUTOMATIC CONTINUITY IS EQUIVALENT TO UNIQUENESS OF INVARIANT MEANS

BY

JOSEPH ROSENBLATT¹

0. Let G be a group and suppose that (X, B, m) is a probability space on which G acts as a group of invertible measure-preserving transformations. Given a function $f: X \to R$ and $g \in G$, the translation $_{g}f$ is defined by $_{g}f(x) = f(g^{-1}x)$ for all $x \in X$. This defines a representation of G as a group of isometries of the Lebesgue spaces $L_p(X)$, $1 \le p \le \infty$. This representation will be called the regular representation of G. A G-invariant mean (for this representation of G as measure-preserving transformation of (X, B, m) is a positive linear functional ϕ on $L_{\infty}(X)$ such that $\phi(1) = 1$ and $\phi(gf) = \phi(f)$ for all $g \in G$ and $f \in L_{\infty}(X)$. The integral with respect to m, denoted (dm, dm)is one such G-invariant mean. We say that the action of G has a unique G-invariant mean if and only if $\int dm$ is the only G-invariant mean. Because there will not be a unique G-invariant mean when the group action by G is not ergodic, we may assume when discussing invariant means that G acts ergodically on (X, B, m); i.e., if $A \in B$ and $m(gA \Delta A) = 0$ for all $g \in G$, then either m(A) = 0 or m(A) = 1. The question of uniqueness of Ginvariant means is of considerable interest and has been successfully settled in many cases in recent years. See Drinfeld [4], Margulis [7], Rosenblatt [12], Sullivan [15].

A G-invariant linear form on $L_p(X)$ is a linear functional λ on $L_p(X)$ such that $\lambda({}_gf) = \lambda(f)$ for all $g \in G$ and $f \in L_p(X)$. We say that the representation of G on (X, B, m) has L_p automatic continuity if any Ginvariant linear form on $L_p(X)$ is continuous in the L_p -norm topology. If the σ -algebra of invariant sets is infinite, then generally L_p automatic continuity fails to hold, so we may assume that G acts ergodically on (X, B, m) when discussing automatic continuity. Notice also that if the action by G is ergodic, then any continuous G-invariant linear form on $L_p(X)$, $1 \le p < \infty$, must be a constant multiple of $\int dm$. This is not necessarily the case on $L_{\infty}(X)$ because of the possible non-uniqueness of G-invariant means. Whether or not the representation of G has automatic continuity can hinge on the algebraic and/or topological properties of G, as well as the function space

© 1991 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Received June 8, 1989.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision) Primary 43A07; Secondary 28A05.

¹Partially supported by a grant from the National Science Foundation.