ON THE BRAUER GROUP AND QUOTIENT SINGULARITIES

BY

TIMOTHY J. FORD¹

Let k be an algebraically closed field with characteristic 0. Let $B(\cdot)$ denote the Brauer group functor as defined in [AG]. Let A be a regular local ring which is a k-algebra essentially of finite type. Let G be a finite group of k-automorphisms of A. Suppose no height 1 prime of A ramifies over A^G . Let P be a prime ideal of height ≥ 2 in A^G and let R be the local ring $(A^G)_P$. Set $S = A \otimes_{A^G} R$. Then G acts on S and $S^G = R$. So S is a finite R-module and no height 1 prime of S ramifies over R. If $K = K(A^G)$ denotes the quotient field, we have the following inclusion relations:

A ↑	⊆	S ↑	⊆	K(A)
A^G	⊆	R	⊆	K

Therefore S is a localization of A in the field of fractions K(A) hence is a regular domain. Since S is finite over R and R is local, S is a semilocal ring. We say that the ring R has quotient singularities if S is a local ring. The maximal ideals of S correspond to the prime ideals of A lying over P, so we see that R has quotient singularities if and only if there is a unique prime ideal Q of A lying over P.

In this short note, we investigate the kernel B(K/R) of the natural map $\tau: B(R) \to B(K)$. If R is regular, it is known that B(K/R) = (0) [AG, Theorem 7.2, p. 388]. For this reason we are primarily interested in the situation where R actually has singularities. This study was motivated by similar questions about the Brauer group and rational singularities on surfaces that were answered in Section 1 of [FS]. Theorem 1 below can also be considered an attempt to correct Theorem 12 of [DF] which is false; a counterexample is given in [DFM]. The example is a normal algebraic surface X with isolated rational singular point P such that ker τ is finite and non-trivial.

© 1991 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Received November 1, 1989.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 13A20; Secondary 16A16. ¹Supported in part by a grant from the National Science Foundation.