ROOT NUMBERS OF JACOBI-SUM HECKE CHARACTERS

BY

David E. Rohrlich ${ }^{1}$

Let p be an odd prime and n a positive integer, and let K be the cyclotomic field of p^{n}-th roots of unity. Let a, b, and c be nonzero integers satisfying $a+b+c=0$. We assume that none of the integers a, b, and c is divisible by p^{n} and that at most one of them is divisible by p. The unitary Jacobi-sum Hecke character χ associated to these data is defined as follows. Given a prime ideal \mathfrak{l} of K, relatively prime to p, and an element x of the ring of integers of K, relatively prime to \mathfrak{l}, let $\left(\frac{x}{\mathrm{I}}\right)_{p^{n}}$ denote the unique p^{n}-th root of unity such that

$$
\left(\frac{x}{\mathfrak{l}}\right)_{p^{n}} \equiv x^{(N \mathfrak{l}-1) / p^{n}}(\bmod \mathfrak{l})
$$

Put

$$
J(\mathfrak{l})=-\sum_{x}\left(\frac{x}{\mathfrak{l}}\right)_{p^{n}}^{a}\left(\frac{1-x}{\mathfrak{l}}\right)_{p^{n}}^{b}
$$

where x runs over representatives for the distinct residue classes modulo \mathfrak{l}, the classes of 0 and 1 being omitted. Now extend J by complete multiplicativity to the group $I(p)$ of fractional ideals of K relatively prime to p, and embed K into \mathbf{C}, so that J becomes a homomorphism from $I(p)$ to \mathbf{C}^{\times}. Then J is a Hecke character (Weil [8]). The associated unitary Hecke character is

$$
\chi(\mathfrak{a})=J(\mathfrak{a})(\mathbf{N} \mathfrak{a})^{-1 / 2}
$$

where \mathfrak{a} denotes an arbitrary element of $I(p)$.
In his original paper of 1952, Weil posed the problem of determining the conductor $\mathrm{f}(\chi)$ of χ. While the case $n=1$ was settled by Hasse [4] soon thereafter, the determination of $\mathrm{f}(\chi)$ for arbitrary n was accomplished only recently, by Coleman and McCallum [1]. The present note gives an application of their result. At issue is the root number in the functional equation of

[^0]
[^0]: Received July 9, 1990
 1980 Mathematics Subject Classification (1985 Revision). Primary 11R42.
 ${ }^{1}$ Research partially supported by a grant from the National Science Foundation.

