THE SYMMETRIC GENUS OF THE HIGMAN-SIMS GROUP $H S$ AND BOUNDS FOR CONWAY'S GROUPS $\mathrm{Co}_{1}, \mathrm{Co}_{2}$

BY
Andrew J. Woldar ${ }^{1}$

Introduction

By a surface we shall always mean a closed connected compact orientable 2 manifold. For G a finite group, the symmetric genus $\sigma(G)$ of G is, by definition, the least integer g such that there exists a surface of genus g on which G acts in a conformal manner. It is well known that any such action of G on a surface S must be accompanied by an orientation-preserving action of G^{0} on S, where G^{0} is a subgroup of index at most 2 in G. In particular, if G is simple, its conformal action on S must be orientation-preserving. In this case we have $\sigma(G)=\sigma^{0}(G)$, where $\sigma^{0}(G)$ denotes the strong symmetric genus of G, defined to be the least integer g such that there is a surface of genus g on which G acts in an orientation-preserving manner.

In this paper we determine the symmetric genus of the Higman-Sims sporadic group $H S$ and substantially improve existing bounds for the sporadic groups Co_{1} and Co_{2} of Conway. To do this we rely on the theory of triangular tesselations of the hyperbolic plane (e.g. see [2], [3], [4]), as well as a theorem of Tucker on partial presentations of groups which admit cellularly embedded Cayley graphs in surfaces of prescribed genus (see [7]). This reduces the problem to one of group generation, which can be handled in principal by computing relevant structure constants for the group, as well as for a variety of its subgroups, by means of character tables. (See [9] for additional details on all of the above remarks.) Throughout, we adopt the notation used in [1] and [8]. In particular, $\Delta_{G}\left(K_{1}, K_{2}, K_{3}\right)$ denotes the structure constant whose value is the cardinality of the set

$$
\left\{(a, b): a \in K_{1}, b \in K_{2}, a b=c\right\}
$$

where c is a fixed element of the conjugate class K_{3} of G. Also all conjugate classes are understood to be G-classes unless otherwise inferred.

[^0]
[^0]: Received May 7, 1990.
 1980 Mathematics Subject Classification (1985 Revision). Primary 20D08
 ${ }^{1}$ This research was completed while the author was visiting the University of Delaware.

