ENDOMORPHISMS OF CERTAIN IRRATIONAL ROTATION C*-ALGEBRAS

BY

KAZUNORI KODAKA

1. Preliminaries for quadratic irrational numbers

First we will give definitions and well known facts on quadratic irrational numbers. Let $GL(2, \mathbb{Z})$ be the group of all 2×2 -matrices over \mathbb{Z} with determinant ± 1 . Let

$$g = \begin{bmatrix} k & l \\ m & n \end{bmatrix} \in GL(2, \mathbf{Z})$$

and θ be an irrational number. We define

$$g\theta = \frac{m+n\theta}{k+l\theta}$$

and we call g a fractional transformation. Furthermore if

 $g \neq \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix},$

then we say that g is non-trivial.

Let **Q** be the ring of rational numbers. We suppose that θ is a quadratic irrational number. If $\theta = x + y\sqrt{d}$ where $x, y \in \mathbf{Q}$ and $d \in \mathbf{N}$, then we define $\theta' = x - y\sqrt{d}$ and we call θ' the *conjugate* of θ . We say that θ is reduced if $\theta > 1$ and $-1 < \theta' < 0$ where θ' is the conjugate of θ .

For any quadratic irrational number θ there are a fractional transformation

$$g = \begin{bmatrix} k & l \\ m & n \end{bmatrix} \in GL(2, \mathbf{Z})$$

© 1992 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Received January 18, 1991.

¹⁹⁹¹ Mathematics Subject Classification. Primary 46L80; Secondary 46L99.