ENDOMORPHISMS OF CERTAIN IRRATIONAL ROTATION C*-ALGEBRAS

BY
Kazunori Kodaka

1. Preliminaries for quadratic irrational numbers

First we will give definitions and well known facts on quadratic irrational numbers. Let $G L(2, \mathbf{Z})$ be the group of all 2×2-matrices over \mathbf{Z} with determinant ± 1. Let

$$
g=\left[\begin{array}{ll}
k & l \\
m & n
\end{array}\right] \in G L(2, \mathbf{Z})
$$

and θ be an irrational number. We define

$$
g \theta=\frac{m+n \theta}{k+l \theta}
$$

and we call g a fractional transformation. Furthermore if

$$
g \neq\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]
$$

then we say that g is non-trivial.
Let \mathbf{Q} be the ring of rational numbers. We suppose that θ is a quadratic irrational number. If $\theta=x+y \sqrt{d}$ where $x, y \in \mathbf{Q}$ and $d \in \mathbf{N}$, then we define $\theta^{\prime}=x-y \sqrt{d}$ and we call θ^{\prime} the conjugate of θ. We say that θ is reduced if $\theta>1$ and $-1<\theta^{\prime}<0$ where θ^{\prime} is the conjugate of θ.

For any quadratic irrational number θ there are a fractional transformation

$$
g=\left[\begin{array}{ll}
k & l \\
m & n
\end{array}\right] \in G L(2, \mathbf{Z})
$$

