A NEW CHARACTERIZATION OF DIRICHLET TYPE SPACES AND APPLICATIONS

RICHARD ROCHBERG¹ AND ZHIJIAN WU

1. Introduction

Let **D** be the unit disk of the complex plane **C** and $dA(z) = 1/\pi dx dy$ be the normalized Lebesgue measure on **D**. For $\alpha < 1$, let

$$dA_{\alpha}(z) = (2-2\alpha)(1-|z|^2)^{1-2\alpha} dA(z).$$

The Sobolev space $L^{2, \alpha}$ is the Hilbert space of functions $u: \mathbf{D} \to \mathbf{C}$, for which the norm

$$\|u\| = \left(\left| \int_{\mathbf{D}} u \, dA_{\alpha}(z) \right|^2 + \int_{\Delta} \left(|\partial u/\partial z|^2 + |\partial u/\partial \bar{z}|^2 \right) dA_{\alpha}(z) \right)^{1/2}$$

is finite. The space D_{α} is the subspace of all analytic functions in $L^{2,\alpha}$. This scale of spaces includes the Dirichlet type spaces ($\alpha > 0$), the Hardy space ($\alpha = 0$) and the Bergman spaces ($\alpha < 0$). (The Hardy and Bergman spaces are usually described differently, however see Lemma 3 of Section 3.) Let

$$\dot{D}_{\alpha} = \left\{ g \in D_{\alpha} : g(0) = 0 \right\}$$

and let

$$P = \{g \text{ is a polynomial on } \mathbf{D} : g(0) = 0\}.$$

Clearly \dot{P} is dense in \dot{D}_{α} . Let P_{α} denote the orthogonal projection from $L^{2,\alpha}$ onto \dot{D}_{α} . For a function $f \in L^{2,\alpha}$ it is possible to define the (small) Hankel operator with symbol $f, h_{f}^{(\alpha)}$, on \dot{P} by (see also [W1])

$$h_f^{(\alpha)} = \overline{P_\alpha(f\bar{g})}.$$

Received May 7, 1991; revised February 14, 1992.

¹⁹⁹¹ Mathematics Subject Classification. Primary 31C25, 33A15, 45P05, 47B35.

¹This work supported in part by a grant from the National Science Foundation.

 $[\]textcircled{0}$ 1993 by the Board of Trustees of the University of Illinois Manufactured in the United States of America