A CHARACTERIZATION OF THE LEADING COEFFICIENT OF NEVANLINNA'S PARAMETRIZATION

ARTUR NICOLAU¹

1. Introduction

Let H^{∞} be the Banach space of all bounded analytic functions in the open unit disc D, with the norm $||f||_{\infty} = \sup\{|f(z)|: z \in D\}$. Given two sequences of points $\{z_n\}, \{w_n\}$ in D, the classical Pick-Nevanlinna problem consists on finding analytic functions $f \in H^{\infty}$ satisfying $||f||_{\infty} \le 1$ and $f(z_n) = w_n$, $n = 1, 2, \ldots$. We will denote it as follows:

(*) Find
$$f \in H^{\infty}$$
, $||f||_{\infty} \le 1$, $f(z_n) = w_n$, $n = 1, 2, ...$

Pick and Nevanlinna found necessary and sufficient conditions in order that such an analytic function exists. Let E be the set of all solutions of the problem (*). Nevanlinna showed that if E has more than one element, there exist analytic functions p, q, r, s in D such that

(1.1)
$$E = \left\{ f \in H^{\infty} : f = \frac{p\varphi + q}{r\varphi + s}, \varphi \in H^{\infty}, \|\varphi\|_{\infty} \le 1 \right\}$$

$$(1.2) ps - qr = B$$

where B is the Blaschke product with zeros $\{z_n\}$. See [2, p. 165] for the proof. Let us remark that there is no explicit formula for the coefficients p, q, r, s in terms of the sequences $\{z_n\}, \{w_n\}$.

In this note, fixed a Blaschke sequence $\{z_n\}$ in D, we get a characterization of the functions that can appear as leading coefficients of Pick-Nevanlinna problems (*).

Received June 21, 1991.

¹⁹⁹¹ Mathematics Subject Classification. Primary 30E05; Secondary 30D55.

¹Supported in part by the grant PB89-0311 of the CYCIT, Ministerior de Educación y Ciencia, Spain.