THE HILBERT TRANSFORM ALONG CURVES THAT ARE ANALYTIC AT INFINITY

LINDA SAAL¹ AND MARTA URCIUOLO¹

1. Introduction

It is known that if B denotes the unit ball of \mathbf{R}^m , $\gamma: B \to \mathbf{R}^n$ is an analytic function, $\gamma(0) = 0$, and k is a $C^{\infty}(\mathbf{R}^m - \{0\})$ function, homogeneous of degree -m, then the operator given by $Tf(x) = p \cdot v \cdot \int_B f(x - \gamma(t))k(t) dt$ is bounded on $L^p(\mathbf{R}^n)$, $1 . See for example [2], [9]. We observe that in this case <math>\gamma$ is "approximately homogeneous" at the origin in the sense given in [10].

The purpose now is to consider the analogous problem at infinity, for the case m = 1. More precisely we prove the following:

THEOREM 1.1. Let $B^C = \{t \in \mathbb{R} : |t| > 1\}$ and let $\gamma : B^C \to \mathbb{R}^n$ be defined by

$$\gamma(t) = (t^{a_1} + \alpha_1(t), \dots, t^{a_n} + \alpha_n(t)), a_i \in \mathbb{N}, \qquad a_1 < \dots < a_n,$$

where α_i is a real analytic function on B^C , $\alpha_i(t) = h_i(t) + P_i(t)$ with h_i analytic at infinity, and P_i a polynomial of degree at most $a_i - 1$. Then the operator

$$\mathscr{H}_{\gamma}f(x) = p \cdot v \cdot \int_{B^{c}} f(x - \gamma(t)) \frac{dt}{t}$$

is bounded on $L^{p}(\mathbb{R}^{n})$, 1 .

This result still holds if $\gamma(t) = (\gamma_1(t) + \alpha_1(t), \dots, \gamma_n(t) + \alpha_n(t))$ where $\gamma_i(t)$ are homogeneous functions of degree $a_i, a_i \in \mathbf{R}, 1 \le a_1 < \dots < a_n$, and asking weaker conditions about the behavior at infinity of $\alpha_i(t)$.

Received August 29, 1990; received in revised form December 2, 1991.

¹⁹⁹¹ Mathematics Subject Classification. Primary 42B2O

¹Partially supported by CONICET and CONICOR, Argentina.

^{© 1993} by the Board of Trustees of the University of Illinois Manufactured in the United States of America