ON THE MEAN SQUARE VALUE OF THE HURWITZ ZETA-FUNCTION

ZHANG WENPENG¹

1. Introduction

For a complex number $s = \sigma + it$ and a real number $0 < \alpha < 1$ let $\xi(s, \alpha)$ be the Hurwitz zeta-function defined by

$$\xi(s,\alpha) = \sum_{n=0}^{\infty} \frac{1}{(n+\alpha)^s}$$

for $\operatorname{Re}(s) > 1$, and its analytic continuation for $\operatorname{Re}(s) \le 1$, and let $\xi_1(s, \alpha) =$ $\xi(s,\alpha) - \alpha^{-s}$.

The main purpose of this paper is to study the asymptotic properties of the mean square value

$$\int_0^1 \xi_1(\sigma_1 + it, \alpha) \xi_1(\sigma_2 - it, \alpha) \, d\alpha \tag{1}$$

where $0 < \sigma_1, \sigma_2 < 1$ and t is an arbitrary real number.

V. V. Rane [1] proved that

$$\int_0^1 \left| \zeta_1(\frac{1}{2} + it, \alpha) \right|^2 d\alpha = \ln t + O(1)$$

holds uniformly in t > 2.

Received January 28, 1992

¹⁹⁹¹ Mathematics Subject Classification. 11M35.

¹Project supported by the National Natural Science Foundation of China.

^{© 1994} by the Board of Trustees of the University of Illinois Manufactured in the United States of America