ON THE MEAN SQUARE VALUE OF THE HURWITZ ZETA-FUNCTION

Zhang Wenpeng ${ }^{1}$

1. Introduction

For a complex number $s=\sigma+i t$ and a real number $0<\alpha<1$ let $\xi(s, \alpha)$ be the Hurwitz zeta-function defined by

$$
\xi(s, \alpha)=\sum_{n=0}^{\infty} \frac{1}{(n+\alpha)^{s}}
$$

for $\operatorname{Re}(s)>1$, and its analytic continuation for $\operatorname{Re}(s) \leq 1$, and let $\xi_{1}(s, \alpha)=$ $\xi(s, \alpha)-\alpha^{-s}$.

The main purpose of this paper is to study the asymptotic properties of the mean square value

$$
\begin{equation*}
\int_{0}^{1} \xi_{1}\left(\sigma_{1}+i t, \alpha\right) \xi_{1}\left(\sigma_{2}-i t, \alpha\right) d \alpha \tag{1}
\end{equation*}
$$

where $0<\sigma_{1}, \sigma_{2}<1$ and t is an arbitrary real number.
V. V. Rane [1] proved that

$$
\int_{0}^{1}\left|\zeta_{1}\left(\frac{1}{2}+i t, \alpha\right)\right|^{2} d \alpha=\ln t+O(1)
$$

holds uniformly in $t>2$.

Received January 28, 1992
1991 Mathematics Subject Classification. 11M35.
${ }^{1}$ Project supported by the National Natural Science Foundation of China.

