INHOMOGENEOUS INEQUALITIES OVER NUMBER FIELDS

EDWARD B. BURGER

1. Introduction

In the classical theory of diophantine approximation, Kronecker, in 1884, was the first to investigate inhomogeneous approximation to real linear forms which were, in some sense, independent over \mathbb{Z} . In a slightly different direction, Khintchine, in 1936, proved that if a homogeneous system of real linear forms was not approximated well by integers (i.e., it was a badly approximable system), then this implied the existence of an excellent integer approximation to any associated inhomogeneous system (see, for example, [9]). Here we study related inhomogeneous problems in the setting of an arbitrary number field. In particular, we examine these issues in the context of the ring of *S*-integers and over the associated adèle ring of the number field. Diophantine approximation over the adèle ring was first studied by Cantor in 1965 [4], then later by Sweet [12] and more recently by the author [2].

In Section 2 we precisely describe all our notation, but briefly, let k be a number field and S a finite collection of places of k containing all archimedean places. We write $k_S = \prod_{v \in S} k_v$ for the topological product of the completions k_v . Let $\{A_v\}_{v \in S}$ be a collection of $M \times N$ matrices such that for each $v \in S$, A_v has its entries over k_v . The S-system $\{A_v\}_{v \in S}$ is said to be a badly approximable S-system of linear forms if there exists a constant $\tau > 0$ such that

$$\tau < h_S(\vec{x}, \vec{y})^N \prod_{v \in S} |A_v \vec{x} - \vec{y}|_v^M$$

for all S-integer column vectors $\vec{x} \in (\mathscr{O}_S)^N$, $\vec{x} \neq \vec{0}$ and $\vec{y} \in (\mathscr{O}_S)^M$, where h_S is a suitably normalized S-height. Our first result is a generalization of Khintchine's theorem to number fields.

THEOREM 1. Let $\{A_v\}_{v \in S}$ be a badly approximable S-system of dimension $M \times N$. For each $v \in S$ suppose that $\varepsilon_v \in k_v$ satisfies $0 < \|\varepsilon_v\|_v < 1$. Then for any $\vec{\beta} = (\vec{\beta}_v) \in (k_S)^M$, there exist vectors $\vec{x} \in (\mathcal{O}_S)^N$ and $\vec{y} \in (\mathcal{O}_S)^M$ such

1991 Mathematics Subject Classification. Primary 11J20, 11J61; Secondary 11R56.

© 1994 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Received June 26, 1992.