FREE GROUPS AND UNIFICATION IN $\mathfrak{A}_m\mathfrak{A}_2$

MICHAEL H. ALBERT AND DAVID PATRICK

1. Introduction

In [3], the order of the free *r*-generated group in the variety generated by a dihedral group D of order $2^{d+1}e$ (where e is odd) is determined to be $2^{r+s}e^{r'}$ where

$$r' = 2^{r}(r-1) + 1$$

$$s = \sum_{t=2}^{d} (d+1-t)(t-1) {r+1 \choose t}$$

(there is a typographical error in the definition of r' in [3]).

The proof of this result depends on a structure theorem for the variety generated by D;

$$\operatorname{var} D = \begin{cases} \mathfrak{A}_{e} \mathfrak{A}_{2} & \text{when } d < 2, \\ \mathfrak{A}_{e} \mathfrak{A}_{2} \lor (\mathfrak{A}_{2^{d-1}} \mathfrak{A}_{2} \land \mathfrak{R}_{d}) & \text{when } d \geq 2. \end{cases}$$

Here the notation is as in [7]; in particular \mathfrak{A}_n is the variety of abelian groups of exponent dividing n, \mathfrak{N}_c is the variety of nilpotent groups of class c, and if \mathfrak{A} and \mathfrak{B} are varieties, then $\mathfrak{A}\mathfrak{B}$ is the variety of all groups which are an extension of a group in \mathfrak{A} by one in \mathfrak{B} .

In the case $d \ge 2$ the calculation of the order then depends on the results in [4] which give a normal form description for elements of the free groups in the varieties $\mathfrak{A}_{p^{\alpha}}\mathfrak{A}_{p}$ (where p is a prime).

In this paper we will restrict our attention to the first case, d < 2. As a matter of personal preference we use *m* rather than *e* for the odd part, and so our goals are to describe the free groups of the variety

$$\mathfrak{A}_m\mathfrak{A}_2$$

where m is odd, and to determine the *unification type* of this variety, which in this context amounts to describing a single most general solution to any system of equations

$$\Sigma = \{t_1(x) = 1, t_2(x) = 1, \dots, t_n(x) = 1\}$$

Received March 9, 1993

¹⁹⁹¹ Mathematics Subject Classification. Primary 2.E10.