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DE BRANGES SPACES CONTAINED IN SOME BANACH
SPACES OF ANALYTIC FUNCTIONS

DINESH SINGH AND SANJEEV AGRAWAL

1. Introduction

L. de Branges has proved in Theorem 15 of [2] an invariant subspace
theorem which generalizes not only Beurling’s famous theorem [1] but also its
generalizations due to Lax [7] and Halmos [4]. The scalar version of the
theorem says:

THEOREM A. Let M be a Hilbert space contractively contained in the Hardy
space H2 of the unit D such that S(M) c M (where S is the operator of
multiplication by the coordinate function z) and S acts as an isometry on M.
Then there exists a unique b in the unit ball of H such that

M=b(z)H2.
Further,

IlbfllM- Ilflln.
In this note we characterize those Hilbert spaces M which are alge-

braically contained in various Banach spaces of analytic functions on the unit
disc D. We drop the contractivity requirement on M (no continuity assump-
tions are made on the inclusion relation). Thus even in the particular case of
M c H2, we obtain an extension of de Branges Theorem by having character-
ized the class of all Hilbert spaces which are vector subspaces of H2 and on
which S acts as an isometry. See Corollaries 5.1 and 4.1.

2. Preliminary notations, definitions and results

Let D be the unit disc in the complex plane and Hp (0 < p < oo) the well
known Hardy spaces on D. Let Lp (0 < p < oo) be the familiar Lebesgue
spaces on the unit circle T. It is well known that H" can be viewed as a space
of functions on T for each p. The Dirichlet space A2 consists of all analytic
functions f(z) such that

(If’(z)l2
dxdy < oo.
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