PERTURBATION OF PLANE CURVES AND SEQUENCES OF INTEGERS

MÁTÉ WIERDL

1. Perturbation of a curve

Definition 1.1. The Lebesgue measure on \mathbb{R}^2 is denoted by m. Let $\Gamma: [0, \infty) \to \mathbb{R}^2$ be a continuous curve. For s > 0 and locally integrable $f: \mathbb{R}^2 \to \mathbb{C}$ we set

$$M_s f(x) = M_s(\Gamma, f)(x) = \frac{1}{s} \int_0^s f(x + \Gamma(t)) dt.$$

(The measurability of $M_s f(x)$ is discussed in the appendix.)

Let $p \ge 1$. We say that Γ differentiates L_{loc}^p if and only if for $f \in L_{loc}^p(\mathbb{R}^2)$ we have

$$\lim_{s\to 0} M_s(\Gamma, f)(x) = f(x)$$

for *m*-a.e. $x \in \mathbb{R}^2$.

Let $1 \le p < \infty$. We say that Γ is ∞ -sweeping out for L^p if and only if there is $f \in L^p(\mathbb{R}^2)$ so that

$$\limsup_{s\to 0^+} M_s(\Gamma, f)(x) = \infty$$

for a.e. $x \in \mathbb{R}^2$.

We say that the continuous curve Δ : $[0, \infty) \to \mathbb{R}^2$ is a *perturbation* of Γ if and only if

$$\lim_{s\to 0}\frac{1}{s} |\{t \mid 0 \le t \le s, \quad \Gamma(t) \ne \Delta(t)\}| = 0,$$

where |A| means the one dimensional Lebesgue-measure of the set A.¹

In the sequel C will denote a "generic" positive constant, which is independent of those quantities it should be independent of, but it can have different values even in the same set of inequalities.

Received May 2, 1997.

¹⁹⁹¹ Mathematics Subject Classification 28, 42.

Research supported in part by an NSF grant at the University of Memphis and Northwestern University. ¹We will use the same notation for the absolute value, but it will not cause any confusion.

^{© 1998} by the Board of Trustees of the University of Illinois Manufactured in the United States of America