A CONVERSE TO THE DOMINATED CONVERGENCE THEOREM

BY
David Blackwell ${ }^{1}$ and Lester E. Dubins ${ }^{2}$

1. Introduction and summary

On a probability space $\left(\Omega, B_{1}, P\right)$, let $\left\{f_{n}, n=1,2, \cdots\right\}$ be a sequence of nonnegative random variables in L_{1} such that $f_{n} \rightarrow f \in L_{1}$ with probability 1 , and define $g=\sup _{n} f_{n}$. If $g \in L_{1}$, the Lebesgue dominated convergence theorem asserts that $E\left(f_{n}\right) \rightarrow E(f)$. More generally, as noted by Doob [1, p. 23], if $g \in L_{1}$, then for any Borel field Θ_{0} contained in $\mathbb{B}^{\text {, }}$

$$
\begin{equation*}
E\left(f_{n} \mid \circlearrowleft_{0}\right) \rightarrow E\left(f \mid \circlearrowleft_{0}\right) \quad \text { a.e. } \tag{1}
\end{equation*}
$$

If one extends this result in a minor manner, Lebesgue's condition $g \epsilon L_{1}$ is not only sufficient but necessary, as the following converse to the dominated convergence theorem asserts.

Theorem 1. If $f_{n} \geqq 0, f_{n} \rightarrow f$ a.e., $f_{n} \in L_{1}, f \in L_{1}$, and $g=\sup _{n} f_{n} \notin L_{1}$, there are, on a suitable probability space, random variables $\left\{f_{n}^{*}, n=1,2, \cdots\right\}, f^{*}$, and a Borel field \mathfrak{C} such that $f^{*}, f_{1}^{*}, f_{2}^{*}, \cdots$ have the same joint distribution as f, f_{1}, f_{2}, \cdots, and

$$
\begin{equation*}
P\left\{E\left(f_{n}^{*} \mid \mathfrak{C}\right) \rightarrow E\left(f^{*} \mid \mathfrak{C}\right)\right\}=0 \tag{2}
\end{equation*}
$$

In view of this result, it is of interest to find conditions which will ensure that $g \epsilon L_{1}$. As a special case of interest, let h be a nonnegative random variable in L_{1}, let Θ_{n} be a monotone sequence of Borel fields contained in Θ, and let $f_{n}=E\left(h \mid \otimes_{n}\right)$. Doob [1, p. 317] has shown that if $h \log h \in L_{1}$, then also $g=\sup _{n} f_{n} \in L_{1}$. It turns out that the condition $h \log h \in L_{1}$ is necessary, as well as sufficient, in the following sense:

Theorem 2. If $h \geqq 0, h \in L_{1}, h \log h \notin L_{1}$, there are, on a suitable probability space, a random variable h^{*} with the same distribution as h and a monotone sequence \bigotimes_{n}^{*} of Borel fields, which can be chosen either increasing or decreasing, for which

$$
\begin{equation*}
g^{*}=\sup _{n} E\left(h^{*} \mid @_{n}^{*}\right) \notin L_{1} . \tag{3}
\end{equation*}
$$

Theorem 2 will be an immediate consequence of the following result, which gives sharp upper bounds on the distribution of g^{*}, rather than only information about the expectation of g^{*} as in Theorem 2.

Theorem 3. Let h^{*} be any nonnegative random variable in L_{1}, and let h be the (essentially unique) nonincreasing function on the unit interval (0,1$]$ whose

[^0]
[^0]: Received March 19, 1962.
 ${ }^{1}$ This paper was prepared with the partial support of the Office of Naval Research.
 ${ }^{2}$ Prepared with the partial support of the National Science Foundation.

