A CONVERSE TO THE DOMINATED CONVERGENCE THEOREM

BY

DAVID BLACKWELL¹ AND LESTER E. DUBINS²

1. Introduction and summary

On a probability space $(\Omega, \mathfrak{G}, P)$, let $\{f_n, n = 1, 2, \cdots\}$ be a sequence of nonnegative random variables in L_1 such that $f_n \to f \in L_1$ with probability 1, and define $g = \sup_n f_n$. If $g \in L_1$, the Lebesgue dominated convergence theorem asserts that $E(f_n) \to E(f)$. More generally, as noted by Doob [1, p. 23], if $g \in L_1$, then for any Borel field \mathfrak{G}_0 contained in \mathfrak{G} ,

(1)
$$E(f_n \mid \mathfrak{B}_0) \to E(f \mid \mathfrak{B}_0)$$
 a.e.

If one extends this result in a minor manner, Lebesgue's condition $g \in L_1$ is not only sufficient but necessary, as the following converse to the dominated convergence theorem asserts.

THEOREM 1. If $f_n \ge 0$, $f_n \to f$ a.e., $f_n \in L_1$, $f \in L_1$, and $g = \sup_n f_n \notin L_1$, there are, on a suitable probability space, random variables $\{f_n^*, n = 1, 2, \dots\}, f^*$, and a Borel field \mathbb{C} such that f^*, f_1^*, f_2^*, \dots have the same joint distribution as f, f_1, f_2, \dots, and

(2)
$$P\{E(f_n^* \mid \mathfrak{C}) \to E(f^* \mid \mathfrak{C})\} = 0$$

In view of this result, it is of interest to find conditions which will ensure that $g \ \epsilon \ L_1$. As a special case of interest, let h be a nonnegative random variable in L_1 , let \mathfrak{G}_n be a monotone sequence of Borel fields contained in \mathfrak{G} , and let $f_n = E(h | \mathfrak{G}_n)$. Doob [1, p. 317] has shown that if $h \log h \ \epsilon \ L_1$, then also $g = \sup_n f_n \ \epsilon \ L_1$. It turns out that the condition $h \log h \ \epsilon \ L_1$ is necessary, as well as sufficient, in the following sense:

THEOREM 2. If $h \ge 0$, $h \in L_1$, $h \log h \notin L_1$, there are, on a suitable probability space, a random variable h^* with the same distribution as h and a monotone sequence \mathfrak{G}_n^* of Borel fields, which can be chosen either increasing or decreasing, for which

(3)
$$g^* = \sup_n E(h^* \mid \mathfrak{B}_n^*) \notin L_1.$$

Theorem 2 will be an immediate consequence of the following result, which gives sharp upper bounds on the distribution of g^* , rather than only information about the expectation of g^* as in Theorem 2.

THEOREM 3. Let h^* be any nonnegative random variable in L_1 , and let h be the (essentially unique) nonincreasing function on the unit interval (0, 1] whose

Received March 19, 1962.

¹ This paper was prepared with the partial support of the Office of Naval Research.

² Prepared with the partial support of the National Science Foundation.