AN ISOMORPHISM THEOREM FOR CERTAIN FINITE GROUPS¹

BY

CHARLES W. CURTIS

Introduction

Let K be a finite field of characteristic p, and let SL(2, K) be the unimodular group of 2 by 2 matrices of determinant one with coefficients in K. We shall be concerned with a finite group G which satisfies a list of axioms which say, roughly speaking, that G is generated by a certain number of subgroups which are homomorphic images of SL(2, K), and that G has p-Sylow subgroups X and Y with certain special properties. We prove that all the finite simple groups G' defined by Chevalley [2] with respect to a finite field K of characteristic $p \geq 5$, and the variations of them defined by Steinberg [13], satisfy our axioms.

The first main result concerns two finite groups G and \overline{G} satisfying the axioms, and generated by subgroups $\phi_1(SL(2, K_1)), \dots, \phi_i(SL(2, K_l))$ and $\overline{\phi}_1(SL(2, K_1)), \dots, \overline{\phi}_i(SL(2, K_l))$, respectively, where the K_i are subfields of K, and the ϕ_i and $\overline{\phi}_i$ are homomorphisms of $SL(2, K_i)$ into G and \overline{G} . Let M and \overline{M} be irreducible right ΩG - and $\Omega \overline{G}$ -modules respectively, where Ω is an arbitrary extension field of K, and ΩG , $\Omega \overline{G}$ denote the group algebras over Ω of G and \overline{G} . A sufficient condition is obtained in order that there exist an Ω -isomorphism $S: M \to \overline{M}$ such that

$$m\phi_i(g)S = (mS)\overline{\phi}_i(g),$$

for all $m \in M$, $g \in SL(2, K_i)$, and $1 \leq i \leq l$. When the hypotheses of this theorem are satisfied, and in addition the modules M and \overline{M} are faithful G-and \overline{G} -modules, it follows that $G \cong \overline{G}$, and that the modules M and \overline{M} are isomorphic as ΩG -modules.

The second main theorem again concerns finite groups G and \tilde{G} satisfying the axioms, and generated by the same number of homomorphic images of SL(2, K), for a given field K. It is also assumed that the p-Sylow subgroups X and \bar{X} of G and \bar{G} respectively, are isomorphic and satisfy a further condition. It is then proved that both G and \tilde{G} satisfy the conditions (1)-(13) of Steinberg's paper [12], and consequently possess irreducible modules over Ω of dimension p^M , where p^M is the order of X. Finally it is shown that if neither G nor \bar{G} has a nontrivial center, then the result of the preceding paragraph can be applied to show that G and \bar{G} are isomorphic. The sufficient condition that $G \cong \bar{G}$ involves only group-theoretic properties of G and \bar{G} , and no information about modules over G and \bar{G} is needed in order to apply the theorem.

Received December 7, 1961.

¹ This research was supported by the Office of Naval Research, and by a grant from the Wisconsin Alumni Research Foundation.