A NOTE ON ABSTRACT (M)-SPACES

BY

ANTHONY L. PERESSINI

The following result is a consequence of the theorem that is proved in this note: Every Banach lattice with a strong order unit can be renormed so that the resulting space is an abstract (M)-space with a unit element. As will be seen from the proof, this rather unexpected result is a simple consequence of several known theorems to be found in various places in [2], [3], and [4].

A locally convex lattice $E(\mathfrak{T})$ is a vector lattice E over the real field equipped with a Hausdorff locally convex topology \mathfrak{T} which has a generating family $\{p_{\alpha}\}_{\alpha \in A}$ of semi-norms satisfying

(1) If $|x| \leq |y|$, then $p_{\alpha}(x) \leq p_{\alpha}(y)$ for all $\alpha \in A$.

A real vector lattice which is a Banach space whose norm satisfies (1) is called a *Banach lattice*. An *abstract* (M)-space is a Banach lattice whose norm also satisfies¹

(2) If
$$x \ge \theta$$
, $y \ge \theta$, then $|| \sup (x, y) || = \max \{ || x ||, || y || \}$.

A subset H of the positive cone $K = \{x \in E : x \ge \theta\}$ in a vector lattice E is an exhausting subset of K if for each $x \in K$ there are an $h \in H$ and a positive number λ such that $x \le \lambda h$. An element $e \in K$ is called a strong order unit if $\{e\}$ is an exhausting subset of K. An element $u \in K$ of a Banach lattice E is called a unit element if ||u|| = 1 and $||x|| \le 1$ implies that $x \le u$. More information as well as further references concerning all of the notions defined above, with the exception of that of (M)-space, can be found in [2] and [3]; an account of the basic theory of (M)-spaces is given, for example, in [1].

The properties of the order topology \mathfrak{T}_0 , introduced independently by Namioka² [2] and Schaefer [3], will play a central role in the considerations that follow. \mathfrak{T}_0 can be defined as the finest locally convex topology on the vector lattice E for which each order interval

$$[-x, x] = \{z \in E \colon -x \leq z \leq x\} \qquad (x \in K)$$

is a topologically bounded set. Thus a neighborhood basis of the zero element θ is provided by the class of all convex circled sets that absorb each order interval in E. If $E(\mathfrak{T})$ is a locally convex lattice, and if $\{p_{\alpha}\}_{\alpha\in A}$ is a generating system of semi-norms for \mathfrak{T} satisfying (1), then each p_{α} is

Received October 13, 1961.

¹ θ denotes the additive identity in E.

² Namioka calls \mathfrak{T}_0 the "order bound topology \mathfrak{T}_b ".