FLAG-TRANSITIVE COLLINEATION GROUPS OF FINITE PROJECTIVE SPACES

BY
D. G. Higman ${ }^{1}$
\section*{1. Introduction}

A flag in a projective space \odot of dimension $d \geqq 2$ is a sequence

$$
S_{0} \subset S_{1} \subset \cdots \subset S_{d-1}
$$

of linear subvarieties of \mathcal{P} such that S_{i} has dimension $i(i=0,1, \cdots, d-1)$. Thus, for example, a flag in a projective plane is an incident point-line pairA collineation group G of \mathscr{P} will be called flag-transitive if any one flag can be carried onto any other by some collineation in G. The little projective group of a Desarguesian \mathcal{P} (i.e., the group generated by all elations of \mathcal{P}, isomorphic with $P S L_{d+1}(F)$, where F is the coordinatizing field) is flag-transitive. Thus the following theorem can be considered as giving a geometric characterization of $P S L_{d+1}(F)$ for finite F. If the number of points on each line of ρ is $n+1$ we will refer to n as the order of \mathcal{P}. (For $d>2$ this differs from the order of the symmetric design formed by the points and hyperplanes of P.)

Theorem. A flag-transitive collineation group G of a Desarguesian projective space \mathcal{P} of dimension $d \geqq 2$ and finite order n must contain the little projective group of \mathcal{P} unless
(a) $d=2, \quad n=2, \quad$ and $|G|=3 \cdot 7, \quad$ or
(b) $d=2, \quad n=8$, and $|G|=9 \cdot 73$, or
(c) $d=3, \quad n=2$, and G is isomorphic with the alternating group A_{7} of degree 7 .

For $d=2$ this theorem coincides with Theorem 1 of [6]. The extension to dimensions $\geqq 3$ (where, of course, the Desarguesian property necessarily holds) is obtained in this paper as an application of extensions of results of André [1], Gleason [5], and Wagner [9] concerning perspectivities, together with a special result about embeddings of $P S L_{k}(F)$ in $P G L_{k+l}(F)$.

The exceptions stated in the theorem are real. In case (c), $G \approx A_{7}$ is doubly transitive on the points of \mathcal{P}. Concerning the question whether the Desarguesian condition can be moved from the hypotheses to the conclusion of the theorem, i.e., whether the existence of a flag-transitive collineation group on a finite projective plane implies Desargues' Theorem, see [6].

[^0]
[^0]: Received May 15, 1961.
 ${ }^{1}$ The author received partial support from an Air Force contract during the time this paper was written.

