FLAG-TRANSITIVE COLLINEATION GROUPS OF FINITE PROJECTIVE SPACES

BY

D. G. HIGMAN¹

1. Introduction

A flag in a projective space \mathcal{O} of dimension $d \geq 2$ is a sequence

 $S_0 \subset S_1 \subset \cdots \subset S_{d-1}$

of linear subvarieties of \mathcal{O} such that S_i has dimension i $(i = 0, 1, \dots, d - 1)$. Thus, for example, a flag in a projective plane is an incident point-line pair. A collineation group G of \mathcal{O} will be called *flag-transitive* if any one flag can be carried onto any other by some collineation in G. The *little projective group* of a Desarguesian \mathcal{O} (i.e., the group generated by all elations of \mathcal{O} , isomorphic with $PSL_{d+1}(F)$, where F is the coordinatizing field) is flag-transitive. Thus the following theorem can be considered as giving a geometric characterization of $PSL_{d+1}(F)$ for finite F. If the number of points on each line of \mathcal{O} is n + 1 we will refer to n as the order of \mathcal{O} . (For d > 2 this differs from the order of the symmetric design formed by the points and hyperplanes of \mathcal{O} .)

THEOREM. A flag-transitive collineation group G of a Desarguesian projective space \mathfrak{O} of dimension $d \geq 2$ and finite order n must contain the little projective group of \mathfrak{O} unless

(a) d = 2, n = 2, and $|G| = 3 \cdot 7$, or (b) d = 2, n = 8, and $|G| = 9 \cdot 73$, or (c) d = 3, n = 2, and G is isomorphic with the alternating group A_7 of degree 7.

For d = 2 this theorem coincides with Theorem 1 of [6]. The extension to dimensions ≥ 3 (where, of course, the Desarguesian property necessarily holds) is obtained in this paper as an application of extensions of results of André [1], Gleason [5], and Wagner [9] concerning perspectivities, together with a special result about embeddings of $PSL_k(F)$ in $PGL_{k+l}(F)$.

The exceptions stated in the theorem are real. In case (c), $G \approx A_7$ is doubly transitive on the points of \mathcal{O} . Concerning the question whether the Desarguesian condition can be moved from the hypotheses to the conclusion of the theorem, i.e., whether the existence of a flag-transitive collineation group on a finite projective plane implies Desargues' Theorem, see [6].

Received May 15, 1961.

¹ The author received partial support from an Air Force contract during the time this paper was written.