THE INITIAL VALUE PROBLEM FOR MAXWELL'S EQUATIONS FOR TWO MEDIA SEPARATED BY A PLANE ${ }^{1}$

Dedicated to Hans Rademacher
on the occasion of his seventieth birthday

BY
Fritz John

Let the column vectors

$$
E=\left(\begin{array}{l}
E_{1} \\
E_{2} \\
E_{3}
\end{array}\right), \quad H=\left(\begin{array}{c}
H_{1} \\
H_{2} \\
H_{3}
\end{array}\right)
$$

describe an electromagnetic field. Denoting the space coordinates by x_{1}, x_{2}, x_{3} and the time by t we put

$$
\xi_{i}=\partial / \partial x_{i}, \quad \tau=\partial / \partial t
$$

The "curl" operator is then represented by the matrix

$$
C(\xi)=\left(\begin{array}{ccc}
0 & -\xi_{3} & \xi_{2} \\
\xi_{3} & 0 & -\xi_{1} \\
-\xi_{2} & \xi_{1} & 0
\end{array}\right)
$$

while the "divergence" operator corresponds to the row vector

$$
\xi=\left(\xi_{1}, \xi_{2}, \xi_{3}\right)
$$

Maxwell's equations for a homogeneous, isotropic, nonconducting medium in the absence of charges then take the form

$$
\varepsilon \tau E=C(\xi) H, \quad \mu \tau H=-C(\xi) E, \quad \xi E=\xi H=0
$$

We consider now the case of two media separated by the plane $x_{1}=0$. The field in the medium $x_{1}<0$, where the electric capacities shall have values ε, μ, we denote by E, H. We require that
(1a) $\quad \varepsilon \tau E=C(\xi) H, \quad \mu \tau H=-C(\xi) E, \quad \xi E=\xi H=0 \quad$ for $x_{1} \leqq 0$.
The field in the other medium, where the capacities shall have values $\varepsilon^{\prime}, \mu^{\prime}$, we denote by E^{\prime}, H^{\prime}. For our purposes it is convenient to use in the second field a new name x_{1}^{\prime} for the first space coordinate x_{1}. Putting

$$
\xi_{1}^{\prime}=\partial / \partial x_{1}^{\prime}, \quad \xi^{\prime}=\left(\xi_{1}^{\prime}, \xi_{2}, \xi_{3}\right)
$$

Received April 28, 1961.
${ }^{1}$ This paper represents results obtained at the Institute of Mathematical Sciences, New York University, sponsored by the Office of Naval Research, United States Navy.

