THE INITIAL VALUE PROBLEM FOR MAXWELL'S EQUATIONS FOR TWO MEDIA SEPARATED BY A PLANE¹

Dedicated to Hans Rademacher on the occasion of his seventieth birthday

> by Fritz John

Let the column vectors

$$E = \begin{pmatrix} E_1 \\ E_2 \\ E_3 \end{pmatrix}, \qquad H = \begin{pmatrix} H_1 \\ H_2 \\ H_3 \end{pmatrix}$$

describe an electromagnetic field. Denoting the space coordinates by x_1 , x_2 , x_3 and the time by t we put

$$\xi_i = \partial/\partial x_i$$
, $\tau = \partial/\partial t$.

The "curl" operator is then represented by the matrix

$$C(\xi) = \begin{pmatrix} 0 & -\xi_3 & \xi_2 \\ \xi_3 & 0 & -\xi_1 \\ -\xi_2 & \xi_1 & 0 \end{pmatrix},$$

while the "divergence" operator corresponds to the row vector

 $\xi = (\xi_1, \xi_2, \xi_3).$

Maxwell's equations for a homogeneous, isotropic, nonconducting medium in the absence of charges then take the form

$$\varepsilon \tau E = C(\xi)H, \quad \mu \tau H = -C(\xi)E, \quad \xi E = \xi H = 0.$$

We consider now the case of two media separated by the plane $x_1 = 0$. The field in the medium $x_1 < 0$, where the electric capacities shall have values ε , μ , we denote by E, H. We require that

(1a)
$$\varepsilon \tau E = C(\xi)H$$
, $\mu \tau H = -C(\xi)E$, $\xi E = \xi H = 0$ for $x_1 \leq 0$.

The field in the other medium, where the capacities shall have values ε' , μ' , we denote by E', H'. For our purposes it is convenient to use in the second field a new name x'_1 for the first space coordinate x_1 . Putting

$$\xi'_1 = \partial/\partial x'_1, \qquad \xi' = (\xi'_1, \xi_2, \xi_3)$$

Received April 28, 1961.

¹ This paper represents results obtained at the Institute of Mathematical Sciences, New York University, sponsored by the Office of Naval Research, United States Navy.