# WARING'S PROBLEM FOR ALGEBRAIC NUMBER FIELDS AND PRIMES OF THE FORM $\left(p^{r}-1\right) /\left(p^{d}-1\right)$ 

Dedicated to Hans Rademacher on the occasion of his seventieth birthday

BY<br>Paul T. Bateman and Rosemarie M. Stemmler ${ }^{1}$<br>\section*{1. Introduction}

Let $K$ be an algebraic number field of finite degree $n$ over the rationals, and let $J(K)$ be its ring of integers. If $m$ is a positive integer greater than unity, let $J_{m}(K)$ be the additive group generated by the $m^{\text {th }}$ powers of the elements of $J(K)$. Clearly $J_{m}(K)$ is a subring of $J(K)$. Needless to say, $J_{m}(K)$ is that subset of $J(K)$ in which Waring's problem for $m^{\text {th }}$ powers is to be considered. The identity

$$
m!x=\sum_{k=0}^{m-1}(-1)^{m-1-k}\binom{m-1}{k}\left\{(x+k)^{m}-k^{m}\right\}
$$

shows that

$$
m!J(K) \subset J_{m}(K) \subset J(K)
$$

Hence $J_{m}(K)$ consists of certain of the residue classes of $J(K)$ modulo $m!J(K)$. Further $J_{m}(K)$ can be determined in a particular case by an examination of the quotient ring $J(K) /\{m!J(K)\}$. This determination can be rather complicated, especially when $m$ is composite.

When $m$ is a prime $q$, the situation is somewhat simpler than in the general case. In particular, it is easy to characterize those algebraic number fields $K$ for which $J_{q}(K)=J(K)$. We shall do this in this paper. Examples of our main result are as follows: (A) $J_{3}(K)=J(K)$ unless either 3 is ramified ${ }^{2}$ in $J(K)$ or 2 has in $J(K)$ a prime ideal factor of second degree, (B) $J_{11}(K)=J(K)$ unless 11 is ramified in $J(K)$, (C) $J_{31}(K)=J(K)$ unless either 31 is ramified in $J(K)$ or 2 has in $J(K)$ a prime ideal factor of fifth degree or 5 has in $J(K)$ a prime ideal factor of third degree. For most primes $q$ the situation is analogous to that for $q=11$, that is, we usually can say that $J_{q}(K)=J(K)$ if and only if $q$ is not ramified in $J(K)$. This generalizes the familiar result [10] that $J_{2}(K)=J(K)$ if and only if 2 is not ramified in $J(K)$.

The primes for which complications occur are those special primes $q$ ex-

[^0]
[^0]:    Received April 24, 1961; received in revised form August 16, 1961.
    ${ }^{1}$ This work was supported by the Office of Naval Research.
    ${ }^{2}$ The phrase " $q$ is ramified in $J(K)$ " means that $q$ is divisible by the square of some prime ideal in $J(K)$. By the so-called ramification theorem (see [6]) the condition that $q$ is ramified in $J(K)$ is equivalent to the condition that $q$ divides the discriminant of $K$. Accordingly our results could easily be modified by replacing the former condition by the latter.

