ON THE NUMBER OF INTEGERS $\leqq x$ WHOSE PRIME FACTORS DIVIDE n

Dedicated to Hans Rademacher on the occasion of his seventieth birthday

BY
N. G. de Bruijn

If n and x are positive integers, then we let $f(n, x)$ denote the number mentioned in the title, i.e., the number of integers m with $1 \leqq m \leqq x, m \mid n^{\infty}$. (The notation $m \mid n^{\infty}$ means that m divides some power of n, or in other words, that all prime factors of m divide n.)
P. Erdös conjectured (in a letter to the author, December 2, 1960) that the average $M(x)=x^{-1} \sum_{n=1}^{x} f(n, x)$ can be written as

$$
M(x)=x^{-1} F(x)=\exp \left((\log x)^{1 / 2+\varepsilon(x)}\right), \quad \text { where } \varepsilon(x) \rightarrow 0 \text { for } x \rightarrow \infty
$$

We shall show in this paper (Theorem 2) that this is true. In fact we can get a much more precise result, viz. that $\log M(x)$ is asymptotically equivalent to $(8 \log x)^{1 / 2}(\log \log x)^{-1 / 2}$. Needless to say, this is still very far from an asymptotic formula for $M(x)$ itself.

The asymptotic formula for the logarithm of the average does not change if we replace $\sum_{n=1}^{x} f(n, x)$ by $\sum_{n=1}^{x} f(n, n)$, which is also considered in Theorem 2. This may give an idea of how rough our result still is.

We shall derive Theorem 2 from Theorem 1, which has some interest in itself. It deals with the partial sums of the series that results from the harmonic series if every denominator n is replaced by the product of the primes that divide it. This result will be obtained in a classical way: We build the corresponding Dirichlet series $f(\sigma)$ (see Lemma 2), we derive asymptotic information about $f(\sigma)$ if $\sigma \rightarrow 0$ (provided by Lemma 1), and we translate this information into information concerning the partial sums. This translation is achieved by a Tauberian theorem of Hardy and Ramanujan (see Lemma 3).

Lemma 1. Let h be a positive constant. If $\sigma>0$, we define

$$
A_{h}(\sigma)=\int_{3 / 2}^{\infty}\left\{\log \left(1+x^{-1}\left(x^{\sigma}-1\right)^{-1}\right)\right\}(\log x)^{-h} d x
$$

Then we have, if $\sigma \rightarrow 0, \sigma>0$, and if h is fixed,

$$
A_{h}(\sigma)=h^{-1} \sigma^{-1}\left(\log \sigma^{-1}\right)^{-h}+O\left\{\sigma^{-1}\left(\log \sigma^{-1}\right)^{-h-1} \log \log \sigma^{-1}\right\}
$$

Proof. Throughout this proof we abbreviate

$$
\left(\log \sigma^{-1}\right)^{-1}=\eta
$$

Received April 24, 1961.

