SYMMETRY TYPES OF PERIODIC SEQUENCES

BY

E. N. GILBERT AND JOHN RIORDAN

1. Introduction

This paper gives a short treatment of the problem appearing in Fine [2], which is as follows. Consider periodic sequences $a = (\dots, a_{-1}, a_0, a_1, \dots)$ with period n and with a_j limited to the q values $1, 2, \dots, q$. If two sequences are taken to be equivalent when they can be made alike either by a shift in origin or by a permutation of the element values $1, 2, \dots, q$, or by both, how many distinct (inequivalent) sequences, or symmetry types of sequences are there?

An example given by Fine is repeated here for concreteness. For n = 3, q = 2 there are two types, namely (111) and (112); (111) and (222) are equivalent by the permutation (12), and the six remaining sequences (112), (121), (211), (221), (212), (122), are equivalent either by this permutation or a shift in origin.

Section 4 is devoted specifically to Fine's problem. Depending on the intended application, a group G of symmetry transformations (possibly different from Fine's) may be allowed. If only translations $(a_i \rightarrow a_{i+s})$ are allowed, G is a cyclic group C_n . This case appears in [5] in connection with counting necklaces made from n beads of q different kinds (translations merely rotate The the necklace). It also arises in problems of coding and genetics [3]. special case n = 12, q = 2 occurs in finding the number of distinct musical chords (of $0, 1, \dots, or 12$ notes) when inversions and transpositions to other keys are equivalences. Turning over the plane of necklace $(a_i \rightarrow a_{-i})$ produces a new "mirror image" necklace. If this symmetry is permitted as well as the translations, then G is a dihedral group D_n . Permutations of the element values 1, 2, \cdots , q form a symmetric group S_q . Thus, in Fine's problem, G is a product group $C_n \times S_q$. This problem has some applications to switching theory. For example, consider a switching network to control q lights, one at a time, in a periodic cycle; here a_i is the name of the light which changes its state at the i^{th} step. In counting the number of distinct sequences possible, translations merely start the cycle at a different point and permutations of $1, \dots, q$ merely give the lights new names. If sequences which operate the lights in reverse order are also considered equivalent, then G becomes $D_n \times S_q$. More details on the music and switching applications appear in Section 6.

Our treatment of $C_n \times S_q$ is related to a special case of one of the theorems in de Bruijn [1]. By its use it is also easy to treat the case $D_n \times S_q$.

Received January 5, 1961.