SOME REMARKS ON TABOO PROBABILITIES

BY

K. L. Chung¹

Consider a discrete-parameter homogeneous Markov chain $\{x_n, n \ge 0\}$ with state space **I** and one-step transition matrix $((p_{ij}))$, $i, j \in \mathbf{I}$. For any subset H of **I** we define the taboo probability

$$_{H}p_{ij}^{(n)} = \mathbf{P}\{x_{n} = j; x_{\nu} \notin H, 0 < \nu < n \mid x_{0} = i\}, \qquad n \geq 1,$$

and set

$$_{H}p_{ij}^{*} = \sum_{n=1}^{\infty} _{H}p_{ij}^{(n)}.$$

When $H = \{k\}$ we write $_{k}p_{ij}^{(n)}$ for $_{H}p_{ij}^{(n)}$. Furthermore we write $f_{ij}^{(n)}$ for $_{j}p_{ij}^{(n)}$ and $e_{ij}^{(n)}$ for $_{i}p_{ij}^{(n)}$. Thus,

$$f_{ij}^* = \sum_{n=1}^{\infty} f_{ij}^{(n)}, \qquad e_{ij}^* = \sum_{n=1}^{\infty} e_{ij}^{(n)}.$$

The quantity f_{ij}^* is familiar, the quantity e_{ij}^* has been studied in [1] under the notation e_{ij} . We set also

$$m_{ij} = \sum_{n=1}^{\infty} n f_{ij}^{(n)};$$

and $_{_{H}}p_{ij}^{(0)} = \delta_{ij}$.

In this paper a "well known" statement means one which can be found in [1], particularly §I.9 there which treats taboo probabilities. What follows may be regarded as some interesting corollaries of well-known results which seem worth stating. They are engendered by a generalization (Proposition 7) of a recent result of Spitzer [3]. This will be placed where it properly belongs, and the proof will be strictly elementary. In doing so we shall define a new binary relation between the states of a Markov chain.

Recall that two states i and j belong to the same recurrent class if and only if $f_{ij}^* = f_{ji}^* = 1$, or alternatively $f_{ii}^* = 1$ and $f_{ij}^* > 0$. A subset C of \mathbf{I} is said to form an *equitable class* if and only if for every i and j in C we have

(1)
$$e_{ij}^* = 1.$$

A well-known example of an equitable class is the following: x_n is the sum of n independent and identically distributed random variables with mean zero, or more generally, x_n is a recurrent Markov chain with stationary and independent increments.

We have the following characterization.

PROPOSITION 1. An equitable class C is recurrent. A recurrent class is equitable if and only if for each i in C, we have

(2)
$$\sum_{j \in C} p_{ji} = 1,$$

namely when $((p_{ij}))$ restricted to C is doubly stochastic.

Received October 6, 1960.

¹ This work is supported in part by the Office of Scientific Research of the United States Air Force.