ON THE NUMBER OF NILPOTENT MATRICES WITH COEFFICIENTS IN A FINITE FIELD

BY
Murray Gerstenhaber

Fine and Herstein have demonstrated [1] that the number of nilpotent $n \times n$ matices with coefficients in the finite field of q elements, $G F(q)$, is $q^{n^{2}-n}$. The present (self-contained) note gives an alternate proof, suggested by algebraic geometry, and not involving sums over partitions of n. Using a lemma of [1], Reiner [2] has determined the number of matrices over $\operatorname{GF}(q)$ having a given characteristic polynomial. This result is here obtained directly from the Fine-Herstein theorem.

1. Proof of the Fine-Herstein theorem

Throughout, N_{k} will denote the $k \times k$ matrix having zeros everywhere but on the first diagonal above the principal one and unity everywhere there. If $k=n$, we write simply N. Given a nilpotent $n \times n$ matrix A, we shall denote by $L(A)$ the linear space of all matrices Y such that $N Y=Y A$, and by a the union of the spaces $L(A)$ for all nilpotent A. The matrices in \mathbb{Q} will be called admissible. One sees that $L\left(T^{-1} A T\right)=L(A) T$, whence Y is admissible if and only if $Y T$ is admissible for any nonsingular T.

We determine now a necessary and sufficient condition that $Y \in \mathbb{Q}$. Given Y, let v be a row vector such that $v Y=0$. If $Y \in \mathbb{Q}$, then $v N Y=v Y A$ for some A, so $(v N) Y=0$, i.e., the null space of Y is preserved by N. Let $v=\left(v_{1}, \cdots, v_{n}\right)$. Then $v N=\left(0, v_{1}, \cdots, v_{n-1}\right)$. This implies that if the rank of Y is r, then the last $n-r$ rows of Y are zero (and the first r, therefore, are independent). Conversely, suppose Y has this property. Then for some nonsingular $T, Y T=E$ is the direct sum of the $r \times r$ identity matrix I_{r} and the $(n-r) \times(n-r)$ zero matrix O_{n-r}. Now E is admissible, for $N E=N_{r} \oplus O_{n-r}$ is nilpotent and $N E=E(N E)$. Therefore $Y=E T^{-1}$ is admissible. The necessary and sufficient condition that $Y \in \mathbb{Q}$ is therefore

If rank $Y=r$, then the last $n-r$ rows of Y vanish.
We see next that $\operatorname{dim} L(A)=n$ for all nilpotent A. Observe that $N Y=Y A$ implies $N^{k} Y=Y A^{k}$ for all k. Let e_{i} denote the row vector having one in the $i^{\text {th }}$ place and zeros elsewhere. Then $e_{1} Y$ (i.e., the first row of Y) may be prescribed arbitrarily, but $e_{k} Y$ is then determined for all k by the relation $e_{k} Y=e_{1} N^{k-1} Y=e_{1} Y A^{k-1}$.

Given $Y \in \mathbb{Q}$, let there be assigned to it a multiplicity $m(Y)$ equal to the number of distinct nilpotent matrices A such that $N Y=Y A$. If O is the zero matrix, then $m(O)$ is just the number of all nilpotent matrices, which we

Received May 18, 1960; received in revised form October 6, 1960.

