SOME INEQUALITIES FOR POLYNOMIALS AND RELATED
ENTIRE FUNCTIONS

BY
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1. Inequalities for polynomials

Throughout this section let p(2) = D a, 2 be a polynomial of degree n.
The following results are immediate.

THEOREM A.
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If p(2) has no zeros in | 2| < 1, Theorem A can be sharpened.

TueoreMm C. If p(z) has no zeros in |z | < 1, then
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Theorem C was proved by N. G. de Bruijn [4].
We prove a corresponding modification of Theorem B.

TaeorEM 1. If p(z) has no zeros in |z | < 1, then
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for R > 1.

Proof of Theorem 1. If ¢(z) = 2"p(1/z), then |g(2)| = |p(2)| for
2| = 1. Since p(z) # 0 for | 2| < 1, it follows that | ¢(2) | = | p(2) | for
| 2| < 1. On replacing z by 1/z we deduce that for |z | > 1,

Ip(2) | = 1q2)].
Now ¢(2) = D »@n 2; hence
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