SOME INEQUALITIES FOR POLYNOMIALS AND RELATED ENTIRE FUNCTIONS

BY
Q. I. Rahman

1. Inequalities for polynomials

Throughout this section let $p(z)=\sum_{v=0}^{n} a_{\nu} z^{\nu}$ be a polynomial of degree n. The following results are immediate.

Theorem A.

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|p^{\prime}\left(e^{i \theta}\right)\right|^{2} d \theta \leqq n^{2} \int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{2} d \theta \tag{1}
\end{equation*}
$$

Theorem B. For $R>1$

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|p\left(R e^{i \theta}\right)\right|^{2} d \theta \leqq R^{2 n} \int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{2} d \theta \tag{2}
\end{equation*}
$$

If $p(z)$ has no zeros in $|z|<1$, Theorem A can be sharpened.
Theorem C. If $p(z)$ has no zeros in $|z|<1$, then

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|p^{\prime}\left(e^{i \theta}\right)\right|^{2} d \theta \leqq \frac{n^{2}}{2} \int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{2} d \theta \tag{3}
\end{equation*}
$$

Theorem C was proved by N. G. de Bruijn [4].
We prove a corresponding modification of Theorem B.
Theorem 1. If $p(z)$ has no zeros in $|z|<1$, then

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|p\left(R e^{i \theta}\right)\right|^{2} d \theta \leqq \frac{R^{2 n}+1}{2} \int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{2} d \theta \tag{4}
\end{equation*}
$$

for $R>1$.
Proof of Theorem 1. If $q(z)=z^{n} \overline{p(1 / \bar{z})}$, then $|q(z)|=|p(z)|$ for $|z|=1$. Since $p(z) \neq 0$ for $|z|<1$, it follows that $|q(z)| \leqq|p(z)|$ for $|z|<1$. On replacing z by $1 / z$ we deduce that for $|z|>1$,

$$
|p(z)| \leqq|q(z)| .
$$

Now $q(z)=\sum_{\nu=0}^{n} \bar{a}_{n-\nu} z^{\nu} ;$ hence

$$
\begin{aligned}
& \int_{0}^{2 \pi}\left|p\left(R e^{i \theta}\right)\right|^{2} d \theta \leqq \frac{1}{2} \int_{0}^{2 \pi}\left|q\left(R e^{i \theta}\right)\right|^{2} d \theta+\frac{1}{2} \int_{0}^{2 \pi}\left|p\left(R e^{i \theta}\right)\right|^{2} d \theta \\
&=\pi \sum_{\nu=0}^{n}\left(R^{2 \nu}+R^{2 n-2 \nu}\right)\left|a_{\nu}\right|^{2}
\end{aligned}
$$

Received December 16, 1959.

