HOMOTOPICAL NILPOTENCY

BY
1. Berstein and T. Ganea
Introduction

Let X be a topological space with base-point, ΩX its loop space, $\Sigma 2$ its (reduced) suspension. The ordinary multiplication and inversion of loops convert ΩX into an H-space. Eckmann and Hilton [6] have shown that, dually, the identification map resulting by pinching to a point the equatorial $X \subset \Sigma X$ and the reflection of ΣX in X may be used to convert the suspension into an H^{\prime}-space, the dual of an H-space. Just as in group theory, for every $n \geqq 1$ a commutator map of weight n is available in any H-space; accordingly, we define the nilpotency class of an H-space as the least integer $n \geqq 0$ (if any) with the property that the commutator map of weight $n+1$ is nullhomotopic. The concepts of a commutator map and of nilpotency class may readily be dualized to H^{\prime}-spaces: for every $n \geqq 1$ there results a cocommutator map of weight n and the co-nilpotency class of an H^{\prime}-space is the least integer $n \geqq 0$ (if any) with the property that the co-commutator map of weight $n+1$ is nullhomotopic. We now revert to the topological space X and introduce two integers, which may be finite or not: the nilpotency class nil ΩX and the co-nilpotency class conil ΣX. They are uniquely determined by the based homotopy type of X.

The paper is divided into six parts. The first contains basic definitions concerning H - and H^{\prime}-spaces, commutator and co-commutator maps, nilpotency and co-nilpotency classes. In the second part, we present results relating the nilpotency and co-nilpotency classes of H - and H^{\prime}-spaces to the nilpotency class of certain groups of homotopy classes of maps; some of these results provide further motivation for our concept of co-nilpotency of an I^{\prime}-space.

Given a base-points-preserving map $f: X \rightarrow Y$, the nilpotency class nil $\Omega 2 f$ is the least integer $n \geqq 0$ for which the composition

$$
\Omega X \times \cdots \times \Omega X \xrightarrow{\varphi_{n+1}} \Omega \Omega \xrightarrow{\Omega \Omega \int} \Omega \Omega Y
$$

is nullhomotopic; here, φ_{n+1} is the commutator map of weight $n+1$, and Ωf is induced by f in the obvious way. In the third section we prove that if $\eta: Q \rightarrow Y$ is the inclusion map of the fibre Q in the total space Y, then nil $\Omega Q \leqq 1+$ nil $\Omega \eta$. Dually, if $\eta: X \rightarrow P$ is the projection of X onto the "cofibre" P, i.e., η is the identification map resulting by pinching to a point a subset which is smoothly imbedded in X, then conil $\Sigma P \leqq 1+$ conil $\Sigma \eta$; the definition we give of conil $\Sigma \eta$ stands in evident duality to that of nil $\Omega \eta$. In particular, nil $\Omega Q \leqq 1+$ nil ΩY and conil $\Sigma P \leqq 1+$ conil ΣX. The first

[^0]
[^0]: Received October 23, 1959; received in revised form February 19, 1960.

