THE COHOMOLOGY THEORY OF A PAIR OF GROUPS'

ΒY

F. HAIMO AND S. MAC LANE

1. Introduction

In a series of papers by S. Eilenberg and S. Mac Lane [4], [5] and by S. Mac Lane [12], the cohomology theory of groups has been expounded in such a way that the group extension problem is recast in homological terms. (See also [9].) In particular, those authors were able to show that group extensions can be related to appropriate 2-cohomology classes in the abelian case, while in the non-abelian case the possibility of extension depends upon a certain obstruction, a 3-cocycle, becoming a coboundary. Let us suppose that we are given an abelian group A with two groups of operators, B_1 and B_2 , where each operator from B_2 commutes with each operator from B_1 . As in R. Baer [2], one can set up cochains, cocycles, coboundaries, and cohomology classes (herein referred to with the prefix bi, as in bicocycle) for this pair of groups B_1 , B_2 with coefficients in A. In §2, using resolutions, we show that the various bicohomology groups $\mathfrak{H}^{(n)}(B_1, B_2; A)$ of the pair B_1, B_2 are isomorphic to the corresponding cohomology groups of the direct sum $B = B_1 \oplus B_2$. In fact, we can find a specific map \mathfrak{F} over the identity automorphism on the group of integers Z from the tensor product of the standard projective resolutions of Z as a left $Z(B_1)$ -module and as a left $Z(B_2)$ -module to the standard projective resolution of Z as a left Z(B)-module. In §3, we consider an extension G of A by B, letting ω be the corresponding epimorphism from G to B. Then the subgroups $G_k = \omega^{-1} B_k$ extend A by B_l $(l \neq k)$ and have the property that each operator b_k (from B_k) on A extends to an automorphism of G_l which induces the identity automorphism on $G_l/A \cong B_l$ so that, as elements in A, (where $u_k(b_k)$ represents b_k in G_k),

$$[u_1(b_1)]^{-1}b_2[u_1(b_1)] + [u_2(b_2)]^{-1}b_1[u_2(b_2)] = 0.$$

Such pairs of extensions, G_1 , G_2 of A by B_1 , B_2 , are called *coherent*. Conversely, given such a pair of coherent extensions, we can find, using the map \mathfrak{F} , an extension G of A by B with epimorphism ω from G to B such that each $G_k = \omega^{-1}B_k$. The set of coherent pairs of extensions of A by B_1 , B_2 can be made into a group $\mathfrak{T}(B_1, B_2; A)$ which is an epimorphic image of $\mathfrak{H}^{(2)}(B_1, B_2; A)$ where the kernel is the inverse image of the coherent pair of splitting extensions. We map both $\mathfrak{H}^{(2)}$ and \mathfrak{T} above into

 $\mathfrak{H}^{(2)}(B_1, A) \oplus \mathfrak{H}^{(2)}(B_2, A)$, forming part of an exact diagram.

In 4, we show that the group of autoequivalences of G over A by B (the

Received September 30, 1959.

¹ This paper was prepared under two contracts of the Mathematics Division, Air Force Office of Scientific Research, one at the University of Chicago, the other at Washington University.