CHARACTERIZATIONS OF THE ALGEBRA OF ALL REAL-VALUED CONTINUOUS FUNCTIONS ON A COMPLETELY REGULAR SPACE

BY

FRANK W. ANDERSON AND ROBERT L. BLAIR

Introduction

If X is a topological space, then we denote by C(X) the set of all realvalued continuous functions on X. For X compact,¹ the set C(X) has been characterized from a variety of topologico-algebraic points of view.² For X an arbitrary completely regular space, however, no such characterization of C(X) has previously been given. The object of this paper is to obtain several such characterizations of C(X). (For a partial result in this direction see Shirota [10, Theorem 12].)

The first section is preliminary in nature. In §2 we represent certain rings A as subrings of C(X), where X is a completely regular space uniquely determined by A. Similar results are obtained in §3 for A an algebra³ and X a Q-space [5] and in §4 for A an algebra and X compact.

In order to characterize C(X) for X an arbitrary completely regular space, it suffices [5] to assume that X is a Q-space. In §§5 and 6 we obtain such characterizations of C(X), regarding C(X) as an algebra, as a lattice-ordered algebra [2], and as a vector lattice [1]. Moreover, for X compact, we give, in §5, new characterizations of C(X) as an algebra.

1. Some separation conditions

In this section we introduce and investigate briefly some separation properties of certain subsets of C(X).

Let A be a subset of C(X). We shall adopt the following definitions:

(1) A is weakly pseudoregular in case X has a subbase \mathfrak{U} of open sets such that for $U \,\epsilon \,\mathfrak{U}$ and $x \,\epsilon \, U$ there is an $\alpha > 0$ in R and an $f \,\epsilon \, A$ such that $|f(x) - f(y)| \ge \alpha$ whenever $y \,\epsilon \, U$.

(2) A is pseudoregular (regular) in case (i) A contains the identity e of C(X), and (ii) whenever $x \in X$ and U is an open neighborhood of x, there is an $f \in A$ such that f(x) = 0 and $f(y) \ge 1$ (f(y) = 1) for all $y \notin U$.⁴

² For references to results of this type see for example [3] and [7].

Received November 25, 1957.

¹ We shall assume that all compact [6] spaces are Hausdorff.

³ By an algebra we shall always mean an algebra A over the real field R. If A has an identity, we shall denote it by e. We shall also adopt the convention that lower case Greek letters denote elements of R, unless otherwise specified.

⁴ The most natural definitions of "pseudoregular" and "regular" would omit requirement (i). Its presence, however, does not affect the generality of our results; we include it merely as a matter of terminological convenience.