LOWEST ORDER EQUATION FOR ZEROS OF A HOMO-GENEOUS LINEAR DIFFERENTIAL POLYNOMIAL

BY

LAWRENCE GOLDMAN

Introduction

If \mathfrak{F} is a field and x belongs to an algebraic extension of \mathfrak{F} , then the algebraic properties of x are completely determined by the irreducible polynomial over \mathfrak{F} which vanishes at x. Similarly, if \mathfrak{F} is an ordinary differential field (i.e., a field with given derivation) of characteristic zero and x belongs to a differentially algebraic differential field extension of \mathfrak{F} , the differential algebraic properties of x are completely determined by the irreducible differential polynomial $F(y) \,\epsilon \,\mathfrak{F}\{y\}$ of lowest order which vanishes at x. We shall call F(y), which is unique up to a nonzero factor in \mathfrak{F} , the lowest differential polynomial of x over \mathfrak{F} , and we shall call the differential equation F(y) = 0 the lowest equation for x over \mathfrak{F} .

Let \mathfrak{F} be an ordinary differential field of characteristic zero, and let C, the field of constants of \mathfrak{F} , be algebraically closed. Let (x_1, \dots, x_n) be a fundamental system of zeros of a homogeneous linear differential polynomial $L_n(y) \in \mathfrak{F}\{y\}$ such that the field of constants of $\mathfrak{F}\langle x_1, \dots, x_n \rangle$ is C. $\mathfrak{F}\langle x_1, \dots, x_n \rangle$ is called a Picard-Vessiot extension of \mathfrak{F} (hereafter denoted by P.V.E.), and the group G of automorphisms of $\mathfrak{F}\langle x_1, \dots, x_n \rangle$ over \mathfrak{F} can be identified with an algebraic group of linear transformations of the vector space V_n over C with basis (x_1, \dots, x_n) . (See [3].) We sometimes call G the group of $L_n(y)$ over \mathfrak{F} .

It is the purpose of this paper to obtain information about G when the lowest equation over \mathcal{F} for some $x \in V_n$ is known, and about the lowest equation for every $x \in V_n$ when G is one of the classical groups.

Notation. Throughout this paper \mathfrak{F} will stand for an ordinary differential field of characteristic zero whose field of constants C is algebraically closed. $L_n(y)$ will always stand for a homogeneous linear differential polynomial of order n. Whenever we speak of zeros of $L_n(y) \,\epsilon \,\mathfrak{F}\{y\}$, we restrict ourselves to zeros which belong to a P.V.E. of \mathfrak{F} . We shall therefore be able to say, for some $L_n(y) \,\epsilon \,\mathfrak{F}\{y\}$, that every one of its zeros satisfies a differential equation over \mathfrak{F} of lower order. If, for a given $L_n(y) \,\epsilon \,\mathfrak{F}\{y\}$, there exist an integer r and $L_r(y), L_{n-r}(y) \,\epsilon \,\mathfrak{F}\{y\}$ such that $1 \leq r \leq n-1$ and

$$L_n(y) = L_{n-r}(L_r(y)),$$

we say that $L_n(y)$ is composite over \mathfrak{F} , that $L_n(y)$ is the composite of $L_r(y)$ and $L_{n-r}(y)$, and that $L_n(y)$ is decomposable by $L_r(y)$ on the right. If an

Received September 3, 1957.