# the Probability that a matrix be nilpotent 

BY<br>N. J. Fine and I. N. Herstein ${ }^{1}$

In this paper we determine the number of nilpotent $n$ by $n$ matrices over (i) a finite field of characteristic $p$, and (ii) the integers modulo $m$. The results are most simple when expressed as probabilities by dividing by the total number of matrices in each case.

Theorem 1. The probability that an $n$ by $n$ matrix over $G F\left(p^{\alpha}\right)$ be nilpotent is $p^{-\alpha n}$.

Proof. Let $A$ be an $n$ by $n$ nilpotent matrix over the finite field $F$. Then ${ }^{2}$ $V_{n}(F)$ has a basis $\left\{v_{s}^{i}\right\}, i=1, \cdots, k ; s=1, \cdots, r_{i}$, such that

$$
\begin{equation*}
v_{s}^{i} A=v_{s-1}^{i} \quad\left(1 \leqq i \leqq k ; \quad 1 \leqq s \leqq r_{i}\right) \tag{1}
\end{equation*}
$$

where it is understood that $v_{0}^{i}=0$. Associated with each such $A$ there is a partition $\pi$ of $n$,

$$
\pi: n=r_{1}+r_{2}+\cdots+r_{k} \quad\left(r_{1} \geqq r_{2} \geqq \cdots \geqq r_{k} \geqq 1\right),
$$

and two matrices are similar if and only if their corresponding partitions are identical. Let $g(\pi)$ be the number of matrices in the similarity class determined by $\pi$. Then the probability of nilpotence is

$$
P=p^{-\alpha n^{2}} \sum_{\pi} g(\pi)
$$

To determine $g(\pi)$, we select and fix a representative $A$ of the similarity class belonging to $\pi$, together with a basis $\left\{v_{s}^{i}\right\}$ associated with $A$ by (1). We then transform $A$ by the $\nu$ nonsingular matrices over $F$ to obtain all the elements of the class, each with multiplicity $\mu$, where $\mu$ is the number of nonsingular matrices which commute with $A$. Then $g(\pi)=\nu / \mu$. Now it is known ${ }^{3}$ that

$$
\nu=x^{-n^{2}} f(n)
$$

where $x=p^{-\alpha}$ and

$$
\left.\begin{array}{rl}
f(n, x)=f(n) & =(1-x)\left(1-x^{2}\right) \cdots\left(1-x^{n}\right) \quad(n \geqq 1) \\
& f(0)
\end{array}\right)
$$

It remains to determine $\mu$.

[^0]
[^0]:    Received July 12, 1957.
    ${ }_{1}$ The first author wishes to acknowledge the support of the Air Force.
    ${ }^{2}$ See, for example, A. A. Albert, Modern higher algebra, University of Chicago Press, 1937, Chapter 4.
    ${ }^{3}$ L. E. Dickson, Linear groups, Leipzig, 1901, p. 77.

