SOME SUFFICIENT CONDITIONS FOR A GROUP TO BE NILPOTENT

In commemoration of G. A. Miller

by P. Hall

1. Let

(1)
$$G = G_0 > G_1 > G_2 > \cdots > G_m = 1$$

be a chain of subgroups of the group G. Following Kaloujnine [1], we define the *stability group* of the chain (1) to be the group A of all automorphisms α of G such that

holds for all $x \in G_{i-1}$ and for each $i = 1, 2, \dots, m$.

If the subgroups G_i are all normal in G, then it is easy to show that A is nilpotent and of class at most m - 1. But without some such assumption of normality, the nature of the group A is not so clear. In [1], however, Kaloujnine proved that A is always at least a soluble group, and the length d of its derived series cannot exceed m - 1. He remarks of this result that it is "wahrscheinlich nicht endgültig." In fact, we shall find that A is still nilpotent even in the general case. This is stated in

THEOREM 1. The stability group A of any subgroup-chain (1) of length m is nilpotent and of class at most $\frac{1}{2}m(m-1)$.

It was shown in [3] that a nilpotent group A of derived length d must be of class at least 2^{d-1} . Thus Theorem 1 yields the bound

(3)
$$d \leq \left[\log_2 m(m-1)\right]$$

for the derived length of the stability group A. This bound never exceeds m-1 and is smaller than m-1 for m > 5. Indeed, it is of a smaller order of magnitude as $m \to \infty$. Hence Kaloujnine's theorem follows from (3).

For the class of A we have the bounds m - 1 and $\frac{1}{2}m(m - 1)$ which apply in the normal case and the general case, respectively. These bounds first differ when m = 3. That the difference is significant we show by constructing a group with a subgroup-chain of length 3 for which the stability group is of class 3. It will also be proved that the subgroup of G generated by all the commutators $x^{-1}x^{\alpha}$ with $x \in G$ and $\alpha \in A$ is always locally nilpotent. This commutator subgroup is known to be always nilpotent in the normal case: cf. [1], Satz 4. We show by an example that this need not be so in the general case.

Received January 5, 1959.