ON MATRIX CLASSES CORRESPONDING TO AN IDEAL AND ITS INVERSE

by Olga Taussky ${ }^{1}$

1. It is known (Latimer and MacDuffee [1], Taussky [2], Zassenhaus [3], Reiner [4]), that there is a $1-1$ correspondence between classes of $n \times n$ matrices A of rational integers and ideal classes. The matrix A is assumed to be a zero of an irreducible polynomial $f(x)$ of degree n with rational integral coefficients and first coefficient 1. The class associated with A consists of all matrices $S^{-1} A S$ where S runs through all unimodular matrices with rational integral coefficients. Let α be an algebraic number root of $f(x)=0$. Then the 1-1 correspondence between the matrix classes and the ideal classes may be described as follows: If $\left(\alpha_{1}, \cdots, \alpha_{n}\right)$ is a modular basis for an ideal \mathfrak{a} in the ring generated by α and $\alpha\left(\alpha_{1}, \cdots, \alpha_{n}\right)^{\prime}=A\left(\alpha_{1}, \cdots, \alpha_{n}\right)^{\prime}$, then the ideal class determined by \mathfrak{a} corresponds to the matrix class determined by A. In what follows we assume that the numbers $1, \alpha, \alpha^{2}, \cdots$ form an integral basis in the field $R(\alpha)$.

It was further shown (Taussky [5], [6]) that for quadratic fields the matrix class generated by the transpose of A corresponds to the inverse class. It is now shown that this is always true. This fact is established in two different ways, once directly, secondly by using a known lemma (Hasse [7], pp. 327328). Both proofs make use of the so-called complementary ideal (see Dedekind [8], pp. 374-376; see also Hecke [9], pp. 131-133).

It is easily seen directly that both the companion matrix C of $f(x)$ and its transpose correspond to the principal class in $R(\alpha)$. Hence

$$
C^{\prime}=S^{-1} C S
$$

where S is unimodular. The matrix S can be constructed explicitly.
It is further shown that the matrix classes defined by unimodular matrices S with $|S|=1$ coincide with the classes defined by $|S|= \pm 1$ if and only if the field has a unit ε with norm $\varepsilon=-1$.

In [5], [6] the matrix classes which correspond to ideal classes of order 2 in a quadratic field were studied. The transpose of a matrix in such a class belongs to the same class. It is now shown that such a class contains a symmetric matrix if the fundamental unit ε has norm $\varepsilon=-1$. This can also be regarded as a special case of a theorem proved by Faddeev [10] from a different point of view.
2. Theorem 1. ${ }^{2}$ Let the matrix A correspond to the ideal class determined

[^0]
[^0]: Received July 27, 1956.
 ${ }^{1}$ The preparation of this paper was sponsored (in part) by the Office of Naval Research.
 ${ }^{2}$ The author is indebted to E. Artin for a helpful remark.

