ON A CLASS OF LINEAR DIFFERENTIAL EQUATIONS WITH PERIODIC COEFFICIENTS

BY JACK K. HALE

Consider the system of linear differential equations

(1)
$$
y'' + A(\lambda)y = \lambda \phi(t, \lambda)y + \lambda \psi(t, \lambda)y' \qquad (y' = d/dt)
$$

+ $A(\lambda)y = \lambda \phi(t, \lambda)y + \lambda \psi(t, \lambda)y'$ (' = d/dt)
meter, $y = (y_1, \dots, y_n)$, $A(\lambda) = \text{diag}(\sigma_1^2, \dots, \sigma_n^2)$,
rices whose elements are real, periodic functions of t of where λ is a real parameter, $y = (y_1, \dots, y_n), A(\lambda) = \text{diag}(\sigma_1^2, \dots, \sigma_n^2),$ ϕ and ψ are $n \times n$ matrices whose elements are real, periodic functions of t of period $T = 2\pi/\omega$, are L-integrable in [0, T], are analytic in λ and have mean value zero. Further, suppose that each $\sigma_i^2(\lambda), j = 1, 2, \cdots, n$ is a real positive analytic function of λ with

$$
\sigma_j(0) \not\equiv \sigma_h(0), \; (\text{mod } \omega i), \qquad j \not\equiv h, \quad j, h = 1, 2, \cdots, n.
$$

Systems of type (1) for $|\lambda|$ small have recently been extensively investigated by ^a method which hs been successively developed and modified by L. Cesari, R. A. Gambill and J. K. Hale for both linear [1, 4, 5, 6, 9] and weakly nonlinear differential systems $[7, 10]$. The aim of the present paper is to prove ^a theorem, concerning the boundedness of the AC (absolutely continuous) solutions of (1) , which contains as a particular case one of the various theorems proved in [1] and [4]. Applying the methods of [1], we prove the following:

THEOREM. If

$$
\phi\,=\,\begin{pmatrix}\phi_{11}&\phi_{12}\\ \phi_{21}&\phi_{22}\end{pmatrix},\qquad \psi\,=\,\begin{pmatrix}\psi_{11}&\psi_{12}\\ \psi_{21}&\psi_{22}\end{pmatrix},
$$

where ϕ_{ij} , ψ_{ij} are matrices with ϕ_{11} and ψ_{11} of dimension $\mu \times \mu$, and if (α) ϕ_{11} , ϕ_{22} , $\mathcal{\psi}_{21}$, $\mathcal{\psi}_{12}$ are even in t, (β) ϕ_{21} , ϕ_{12} , $\mathcal{\psi}_{11}$, $\mathcal{\psi}_{22}$ are odd in t, then, for $|\lambda|$ sufficiently small, all the AC solutions of (1) are bounded in $(-\infty, +\infty)$.

For ψ identically zero, ϕ and A independent of λ , and each element of ϕ and even function of t having mean value zero and possessing absolutely convergent Fourier series, this theorem was first proved by L. Cesari [1] and then extended by the author [9] to L-integrable functions. Using the techniques in [1], R. A. Gambill [4] extended the theorem of Cesari to the case where ψ is odd in t.

We shall prove the above theorem by showing that there is ^a fundamental system of AC solutions of (1) which are bounded for all values of t. Furthermore, we shall see that each solution y of the fundamental system so obtained has the following property: if the first μ components of y are even (or odd), then the last $n - \mu$ components are odd (or even).

If we make the transformation of variables

(2)
$$
y_j = \frac{1}{2i\sigma_j}(z_{2j-1} - z_{2j}), \quad y'_j = \frac{1}{2}(z_{2j-1} - z_{2j}), \quad j = 1, 2, \cdots, n,
$$

Received July 9, 1956.