INEQUALITIES FOR ASYMMETRIC ENTIRE FUNCTIONS ${ }^{1}$

by R. P. Boas, Jr.

Let $p_{n}(z)$ be a polynomial of degree n such that $\left|p_{n}(z)\right| \leqq 1$ in the unit disk $|z| \leqq 1$. The following results are well known.

Theorem A. For $|z|=R>1,\left|p_{n}(z)\right| \leqq R^{n}$.
Theorem B. For $|z|=1,\left|p_{n}^{\prime}(z)\right| \leqq n$.
Theorem A is a simple deduction from the maximum principle (see [11], p. 346, or [10], vol. 1, p. 137, problem III 269). Theorem B is an immediate consequence of S. Bernstein's theorem on the derivative of a trigonometric polynomial (for references see [12], or [2], pp. 206, 231).

When $p_{n}(z)$ has no zeros in $|z|<1$, more precise statements can be made:
Theorem C. For $|z|=R>1,\left|p_{n}(z)\right| \leqq \frac{1}{2}\left(1+R^{n}\right)$.
Theorem D. For $|z|=1,\left|p_{n}^{\prime}(z)\right| \leqq \frac{1}{2} n$.
Theorem D was conjectured by Erdös and proved by Lax [8]; for another proof see [4]. Theorem C was deduced from Theorem D by Ankeny and Rivlin [1].

Since $p_{n}\left(e^{i z}\right)$ is an entire function of exponential type, these theorems suggest generalizations to such functions. Let $f(z)$ be an entire function of exponential type τ, with $|f(x)| \leqq 1$ for real x.

Theorem A'. For all $y,|f(x+i y)| \leqq e^{\tau|y|}$.
Theorem B^{\prime}. For all real $x,\left|f^{\prime}(x)\right| \leqq \tau$.
Theorem A^{\prime} is a simple consequence of the Phragmén-Lindelöf principle (for references see [2], p. 82; see also [11], pp. 346-347). Theorem B^{\prime} is Bernstein's generalization of Theorem B (see references on Theorem B).

In this note I obtain theorems for entire functions which generalize Theorems C and D . To see what to expect, note that $p_{n}\left(e^{i z}\right)$ is an entire function $f(z)$ of exponential type of a special kind: if $h(\theta)$ is its indicator, we have $h(-\pi / 2)=n$, but $h(\pi / 2)>-n$ unless $p_{n}(z)=c z^{n}$. If $p_{n}(z)$ has no zeros in $|z|<1, f(z)$ has no zeros in $y>0$, and moreover (since $\left.p_{n}(0) \neq 0\right) h(\pi / 2)=0$.

Let us consider, then, entire functions $f(z)$ of exponential type τ with $|f(x)| \leqq 1$ for real $x, h(\pi / 2)=0$ (hence necessarily $h(-\pi / 2)=\tau$, and $f(z) \neq 0$ for $y>0$.

Theorem 1. For $y<0,|f(x+i y)| \leqq \frac{1}{2}\left(e^{\tau|y|}+1\right)$.
Theorem 2. For all real $x,\left|f^{\prime}(x)\right| \leqq \frac{1}{2} \tau$.
Received May 8, 1956.
${ }^{1}$ Research supported by the National Science Foundation.

