THE NUMBER OF REPRESENTATIONS OF AN INTEGER BY A QUADRATIC FORM

GORO SHIMURA

Introduction. Our quadratic form $x \mapsto \varphi[x]$ is defined on a vector space V of dimension n (> 1) over a totally real algebraic number field F. We let G^{φ} denote the orthogonal group of φ , and \mathfrak{g} the maximal order of F. For a \mathfrak{g} -lattice L in V and an element $h \in \mathfrak{g}$, we denote by N(L, h) the number of elements $x \in L$ such that $\varphi[x] = h$. Here we assume that φ is totally positive definite, h is totally positive, and $\varphi[x] \in \mathfrak{g}$ for every $x \in L$. As previous researchers on this topic discovered, in order to obtain a meaningful formula in the most general case, we have to consider a certain average of several numbers of type N(L, h) instead of a single N(L, h) as follows. We first take a set of lattices $\{L_i\}_{i=1}^k$ that are representatives for the classes belonging to the genus of L. Then we put

$$\mathfrak{m}(L) = \sum_{i=1}^{k} [\Gamma_i : 1]^{-1},$$
$$R(L,h) = \sum_{i=1}^{k} [\Gamma_i : 1]^{-1} N(L_i,h),$$

where $\Gamma_i = \{\gamma \in G^{\varphi} \mid L_i \gamma = L_i\}$. The purpose of this paper is to give an exact formula for R(L, h) when L is *maximal* in the sense that it is maximal among the lattices on which φ takes values in g. In the previous work [S5], we gave an exact formula for $\mathfrak{m}(L)$. Thus the present paper is its natural continuation.

Before stating the formula, let us first recall the result of Siegel on this topic. For a prime ideal \mathfrak{p} in F and $0 < m \in \mathbb{Z}$, let $A_m(\mathfrak{p})$ denote the number of elements yin $L/\mathfrak{p}^m L$ such that $\varphi[y] - h \in \mathfrak{p}^m$. Then, as Siegel showed, $N(\mathfrak{p})^{m(1-n)}A_m(\mathfrak{p})$ is a constant $d_\mathfrak{p}(h)$ independent of m if m is sufficiently large. Suppose that V (resp. L) is the vector space (resp. the module) of all n-dimensional row vectors with entries in F (resp. \mathfrak{g}) and $\varphi[x] = x\varphi_0 \cdot t^x$ with a totally positive symmetric matrix φ_0 with entries in \mathfrak{g} . Then he proved that

(1)
$$\frac{R(L,h)}{\mathfrak{m}(L)} = c_n D_F^{(1-n)/2} \pi^{dn/2} \Gamma\left(\frac{n}{2}\right)^{-d} N_{F/\mathbf{Q}} \left(\det(\varphi_0)^{-1} h^{n-2}\right)^{1/2} \prod_{\mathfrak{p}} d_{\mathfrak{p}}(h),$$

where D_F is the discriminant of F, p runs over all the prime ideals in F, $c_n = 1$ if n > 2, $c_n = 1/2$ if n = 2, and $d = [F : \mathbf{Q}]$; the infinite product $\prod_{p} d_p(h)$ must be

Received 4 November 1997. Revision received 19 October 1998.

1991 Mathematics Subject Classification. Primary 11E25; Secondary 11E12, 11E45.