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80. Introduction. Let(M, g) be am-dimensional, compact, smooth, Riemannian
manifold without boundary. For = 2, we know from the uniformization theorem of
Poincaré that there exist metrics that are pointwise conformaktad have constant
Gauss curvature. Far> 3, the well-known Yamabe conjecture states that there exist
metrics that are pointwise conformal goand have constant scalar curvature. The
answer to the Yamabe conjecture is proved to be affirmative through the work of
Yamabe [39], Trudinger [38], Aubin [1], and Schoen [31]. See Lee and Parker [23]
for a survey. See also Bahri and Brezis [3] and Bahri [2] for works on the Yamabe
problem and related ones. For> 3, let g = u*/"=? ¢ for some positive function
u > 0 on M; the scalar curvatur&; of g can be calculated as

Rz =u~(("+2/(1=2) (Rgu _ _21) Agu) ,
"o

where R, denotes the scalar curvature gf Therefore, the Yamabe conjecture is
equivalent to the existence of a solution to

(0.2) —Lgu = Ru"t2/=2 4~ 0/in M,
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