THE YAMABE PROBLEM ON MANIFOLDS WITH BOUNDARY: EXISTENCE AND COMPACTNESS RESULTS

ZHENG-CHAO HAN AND YANYAN LI

CONTENTS

§0.	Introduction	489
§1.	Reductions	498
§2.	The proof of Proposition 1.4	508
§3.	The proof of Proposition 1.3	516
§4.	The proof of Proposition 1.2	520
§5.	The proof of Theorems 0.1 and 0.2	525
§6.	The proof of Theorem 0.3	530
	Appendix	536

§0. Introduction. Let (M, g) be an n-dimensional, compact, smooth, Riemannian manifold without boundary. For n = 2, we know from the uniformization theorem of Poincaré that there exist metrics that are pointwise conformal to g and have constant Gauss curvature. For $n \ge 3$, the well-known Yamabe conjecture states that there exist metrics that are pointwise conformal to g and have constant scalar curvature. The answer to the Yamabe conjecture is proved to be affirmative through the work of Yamabe [39], Trudinger [38], Aubin [1], and Schoen [31]. See Lee and Parker [23] for a survey. See also Bahri and Brezis [3] and Bahri [2] for works on the Yamabe problem and related ones. For $n \ge 3$, let $\tilde{g} = u^{4/(n-2)}g$ for some positive function u > 0 on M; the scalar curvature $R_{\tilde{g}}$ of \tilde{g} can be calculated as

$$R_{\tilde{g}} = u^{-((n+2)/(n-2))} \left(R_g u - \frac{4(n-1)}{n-2} \Delta_g u \right),$$

where R_g denotes the scalar curvature of g. Therefore, the Yamabe conjecture is equivalent to the existence of a solution to

(0.1)
$$-L_g u = \overline{R} u^{(n+2)/(n-2)}, \quad u > 0, \text{ in } M,$$

Received 7 August 1998.

1991 Mathematics Subject Classification. Primary 58, 53; Secondary 35.

Han's work partially supported by a Rutgers University Research Council grant, a Minority Faculty Development grant, and National Science Foundation grant number DMS-9704488.

Li's work partially supported by the Alfred P. Sloan Foundation Research Fellowship, National Science Foundation grant DMS-9401815, and a Rutgers University Research Council grant.