CENTRAL VALUES OF HECKE *L*-FUNCTIONS OF CM NUMBER FIELDS

FERNANDO RODRIGUEZ VILLEGAS AND TONGHAI YANG

0. Introduction. It is well known that the zeta function of CM (complex multiplication) abelian varieties can be given in terms of L-functions of associated Hecke characters. In this paper, we prove a formula expressing the central special value of the L-function of certain Hecke characters in terms of theta functions. The formula easily implies that the central value is nonnegative and yields a criterion for its positivity. Combining this criterion with the work of Arthaud and Rubin, we show that certain CM elliptic curves have Mordell-Weil rank zero over their field of definition.

Let *F* be a totally real number field of degree *t* and let μ be a quadratic Hecke character of *F* of conductor f such that $(2\mathbb{O}_F, \mathfrak{f}) = 1$. Given a CM extension *E* of *F*, we consider the twist $\chi = \chi_{\operatorname{can}} \tilde{\mu}$ of μ by a "canonical" Hecke character $\chi_{\operatorname{can}}$ of *E* (see Section 2), where $\tilde{\mu} = \mu \circ N_{E/F}$, as well as its odd powers χ^{2k+1} , $k \in \mathbb{Z}_{\geq 0}$. Consider the following condition:

(*) All units of E are real and every prime of F dividing $2\mathfrak{f}$ is split in E/F.

Our main result is the following.

THEOREM 0.1 (Sketch of Theorem 2.5). Assume that F has ideal class number 1 and $(-1)^{kt}\mu_{\infty}(-1) = 1$, where $\mu_{\infty} : (F \otimes \mathbb{R})^* \longrightarrow \mathbb{C}^*$ is the infinite part of μ . Then there is an explicit theta function $\theta_{\mu,k}$ over F, depending only on μ and k, such that for every CM quadratic extension E of F satisfying the condition (*), the central L-value

(0.1)
$$L(k+1,\chi^{2k+1}) = \kappa \left| \sum_{C \in \operatorname{CL}(E)} \frac{\theta_{\mu,k}(\mathfrak{A})}{\chi^{2k+1}(\bar{\mathfrak{A}})} \right|^2.$$

Here, κ is an explicit positive number, $\mathfrak{A} \in C^{-1}$ is a primitive ideal relatively prime to $2\mathfrak{f}$, and $\theta_{\mu,k}(\mathfrak{A})$ is essentially the value of a theta function $\theta_{\mu,k}$ at a CM point in E associated to \mathfrak{A}^2 .

We emphasize that $\theta_{\mu,k}$ is *independent* of the CM field E, which is one of the

1991 Mathematics Subject Classification. Primary 11G05, 11M20; Secondary 14H52.

Yang partially supported by National Science Foundation grant DMS-9304580.

Received 29 July 1996. Revision received 16 September 1998.

Rodriguez Villegas supported in part by National Science Foundation grant DMS-9500872 and a fellowship from the John Simon Guggenheim Memorial Foundation.